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This is the final report for the U.S. Army Research Office Grant DAAL 03-86-k-0090. ‘
According to the reporting instructions (ARO Form 18, page 5) technical material which was
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The thrust of the research under this grant has been to develop the methodology for
the modeling and design antenna arrays and microstrip discontinuities for microwave circuit
applications. I believe that certain outstanding results have been obtained during this period
and these are highlighted in what follows:

H-Y. Yang's Ph.D. thesis involves several key contributions in the subject areas of
modeling microstrip discontinuities, microstrip transitions, and the synthesis of microstrip di-
pole arrays. This work has generated several journal publications within which one finds a |
fundamental contribution to the understanding of the above mentioned subjects. The analysis |
and the generated computer programs serve as practical tools for the design of microstrip cir- 1
cuits and microstrip dipole arrays. The methodology was substantiated in each case with an |
experiment. The journal publication "Design of Transversely Fed EMC Microstrip Dipole Ar-
rays Including Mutual Coupling" IEEE Transactions on Antennas and Propagation, Vol. 38,
No.2, February 1990 is only one of many examples from Yang’s excellent Ph.D. thesis work.
This is a seminal paper since it is the first publication where a full synthesis procedure is
developed for the design of transversely fed electromagnetically coupled dipoles. The solu-
tion is complete as it accounts for all substrate effects and mutual coupling. It demonstrates
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that mutual coupling contributes 25% of the total value of the array input active admittance
and it therefore can not be neglected. The design procedure evolved into the fabrication of a
microstrip dipole array. The experimental results show very good agreement with theory.

An evolution of Yang’s work has led to the understanding of microstrip discontinuity
effects. In particular the theory has been extended to model microstrip bends, T-junctions,
four ports, etc. In each case the algorithms account for a precise description of energy loss at
discontinuities due to radiation loss and surface wave loss. These models have also been sub-
stantiated with experiment. The models are now extended to provide precise designs for mi-
crostrip corporate feeds. This will lead to the design of two dimensional transversely fed
electromagnetically coupled dipole arrays.

Sincerely yours,

N.G. Alexopoulos
Professor
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Design of Transversely Fed EMC Microstrip
Dipole Arrays Including Mutual Coupling

HUNG-YU YANG, MEMBER, 1Eee, NICOLAOS G. ALEXOPOULOS, reLLow, ieeg, PHILIPPE M. LEPELTIER, anp
GEORGE J. STERN, SENIOR MEMBER, 1EEE

Abstract—Design techniques and procedures for microstrip dipole
arrays transversely fed by proximity coupled microstrip lines are pre-
sented. Two design equations, which include the cffects of mutual
coupling, are developed and the corresponding design curves are obtained
by a rigorous integral equation solution. A seven-clement standing wave
limear array is designed 10 Ulustrate the developed design procedures. The
design data are checked by a complete integral equation solution of the
array with good agreement. The measurements of radiation pattern and
input impedance are found in good agreement with the design goal.

I. INTRODUCTION

LTMAN INTRODUCED a class of electromagnetically

coupled (EMC) dipole antennas [1], [2]. The advantages
of EMC dipoles are greater bandwidth, higher efficiency and
an easier match to the feed lines, when compared to classically
fed printed antennas. Based on the transmission line circuit
model, Oltman and Huebner {2} built an EMC dipole array
with radiating elements parallel (collinear) to the feedlines.
Later, Elliott and Stern developed a rigorous design theory to
include the effects of mutual coupling which successfully
predicted the array performance [3], [4]. An efficient way to
obtain the design curves was reported later (5]-[7] based on
solving a Pocklington type integral equation using the method
of moments. The EMC collinear dipole is ideally suited to a
corporate feed, and elements of this type can be arranged in
circular as well as rectangular grids.

Another dipole antenna of the Oltman type is the EMC
transverse dipole, as shown in Fig. 1, where a dipole is
oriented transverse to an embedded microstripline. A string of
these dipoles above a common microstripline becomes a
linear array. Depending on dipole spacing, one can obtain
stanrding wave arrays or traveling wave arrays. A family of
these linear arrays becomes a planar array. Current excitation
on the dipole is governed by the amount of offset and the
dipole length. If the dipole straddles symmetrically, no
excitation of the dipole occurs., Weak coupling from line to
dipole can be achieved through a slight lateral displacement of
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Fig. 1. The electromagnetically coupled transverse dipole.

the dipole from its centered position. Because of this weak
coupling, large arrays are feasible [8].

Both theoretical and experimental studies of the EMC
transverse dipole have been reported recently [9], [10]. In this
paper, a design technique which includes mutual coupling is
developed for the EMC transverse dipole arrays. Two design
equations will be introduced in Section II. The.methods for
generating design curves will be discussed in Section IIl. A
design example will be given in Section IV together with the
experimental results. A numerical verification of the design
obtained by solving the boundary value problem of the whole
array system will also be provided.

II. Two DEsiGN EQUATIONS

For the transverse EMC dipole under consideration, it can
be shown from image theory that the scattering off the dipole
is symmetric. In other words, the forward and backward
scattering coefficients are the same. Therefore, in terms of the
transmission line equivalent circuit, the dipole can be approxi-
mated as a shunt element with respect to the feed [11]. Each
dipole in the array environment can then be modeled as a two-
port network as shown in Fig. 2, and the whole system is a
linear bilateral network. Therefore, one can write

N
In= 2 Vn Ymn

me=1

(M

as a.set of equations connecting the transmission line mode

0018-926X/90/0200-0145$01.00 © 1990 IEEE
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Fig. 2. Equivalent circuit of a dipole seen by the transverse microstripline.

voltages and currents at each reference port. The active
admittance of each dipole seen by the feed line can be defined
from (1) by

yo2r
n~ v,
=Y+ Y,b, @

where

N [V,
yi=Y (7”) Youm» 3)

m=l n

with the prime on ¥ indicating the term n = m is excluded.
Y, is the self-admittance and Y? is referred to as the mutual
admittance due to the mutual coupling between each dipole.
Since a linear system is assumed, the current in each dipole
can be written as

_"..=—l;—+2 — (4)

where I, is the curreat of the nth dipole for a given mode
voltage in the absence of other dipoles and I,,,, is the current of
the nth dipole due to the current in the mth dipole. The isolated
dipole current I, is a function of mode voltage, dipole length,
and dipole offset which can further be expressed as

In__ Yu

Va Su(Sns b)’
where f,(sn, I,) is a coefficient function relating the isolated
dipole current to its self-admittance.

The two design equations can be summarized from the
above derivations by

G

Iy, N,
n nn ¢ 4mn
Vo Ja mul Ve

and

Nt Vi
Y:= Ynn+ 2 V Yl"”‘ (7)
n

mwuli
It is noted that, for the EMC transverse dipole, the current
phase variation in an isolated dipole is quite large, typically 5°
to 10°; while, in contrast, the current due to mutual coupling
has a small phase variation. Therefore, in the design, the
coefficient function is not suitable for relating mutuai current
(Iun) and mutual admittance (Y,,). One can use the mutual
current term (/) directly in (6).

The fundamental design problem is now obvious. For a
given design goal (radiating current in each dipole /™) one
wishes to find a set of (s,, /,) such that not only is (6) satisfied,
but also the active admittance seen by each feed line is what
was prescribed. The definition of the radiating current in each
dipole may depend on the design goal. For example, if one
wishes to design a specific pattern in the H-plane (perpendicu-
lar to the dipole), the 7™ should be defined as the current
collapsed in the feed line. In other words,

12={" 1) . ®

In the two design equations ((6) and (7)), Ynn, frs Iua/V, and
Y.nn can be determined by the method of moments. This issue
will be discussed in the next section.

Suppose that all four functions are known. Further computa-
tions are still required to find the dipole lengths and offsets.
Since only relative currents in the dipoles are meaningful, one
can arbitrarily choose a dipole, say the nth, with length /, and
offset s,. For the moment, assume that no mutual coupling
exists and that the left-hand side of (6) can be determined
according to the design goal (desired currents in the dipoles).
One now can use the first design equation (6) to find N-1

dipole lengths and offsets. This procedure requires that a two-.

variable nonlinear equation be solved N-1 times. To avoid the
stability and solvability problem of this nonlinear equation, the
conjugate gradient method {12} can be used to provide
optimized solutions. Even if the above procedures are com-
pleted, a few iterations of changing the dipole length or offset
of the first selected dipole are required to provide the
prescribed input impedance. Now the design data is what one
should obtain if no mutual coupling exists. To include the
effect of mutual coupling, one can use the present design data
to compute the mutual admittance and mutual currents and go
back to the two design equations repeating the above itera-
tions. The whole procedure is iterated until convergence of the
design data is found.

III. Discussion oF THE METHOD OF MOMENTS SOLUTION

In order to make an accurate design possible, information
about the interaction between dipoles as well as dipole
coupling to the feed line is required. The method of moments
provides a rigorous and accurate solution. Integral equations
for the EMC transverse dipole can be written as

E(x, y)= H GuJO(x’, y") dx’' dy’

+ SS GyJP(x', y) dx" dy' (9)
and
E/(x,y)= SS G M(x', ') dx’ dy’

+{[ 6@,y ax dy' (10)

where J{)(x’, y’) is the current in the microstripline and
Jf)(x’, »’) is the current in the dipole. The functions G,
Gy, Gy and G,, are the dyadic Green’s function components.
A nice way of modeling the feed line is to use a finite but long

N B s A skl
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microstripline with a §-gap generator placed far from the line-
dipole coupling region [5], [6). When the combination of
piecewise sinusoidal and Maxwell current basis functions is
used .in the method of moments [5], [6] followed by the
Galerkin procedure, the matrix equations ‘

(Zmn ) In}=1E,) an

can be obtained. The excitation column vector E has compo-
nents E; = —1 when the § gap source is located at the center
of the kth basis function, and E, = 0 anywhere else. The
impedance matrix elements are in the form of

Zan={ [ LE=NDFOV+RRONT O, M)
* Im(Aes N)) cos (\Ax) cos (\,Ay) d\ dp (12)

when the mth and the nth basis functions are both on the dipole
or on the line, and

Zun={" [T MMLO)-HONT, O W)

« TuOher N) sin (\AX) sin (A, Ay) d\ dé, (13)

otherwise. The functions J,(As, A,) and J, (A, A,) are the
Fourier transforms of the expansion and testing functions,
respectively. (Ax, Ay) is the displacement vector of two basis
function centers, while A\, and A, are defined as

A=\ cos ¢ (14)

and

A=\ sin ¢. (15)

The functions f(N) and A()) are given explicitly in [13], [14].
The unknown currents in the feed line or the dipole can be
obtained by matrix inversion. As a result, one can use the
unimode transmission line theory to deduce the circuit
information from the methou of moments solution for the
current in the feed line. This procedure involves finding the
current maximum, minimum, and their positions. Detailed
procedures for this are shown in [5]. It is noted that in order to
find the dipole equivalent admittance, the dipole can be placed
a half-electrical wavelength from the line end such that the
stub admittance will not be included in the input admittance
observed by the feed line. An example of the input impedance
calculation for an isolated dipole together with the experimen-
tal verification [9] is shown in Fig. 3. In the calculation, 19
basis functions are used in the dipoie and 100 basis functions
are used in the feed line of 1.5 Ao long. The comparison shows
rather good agreement.

One of the features of using a'd gap source is that the mode
voltage of the line changes with change of the dipole length or
offset (load); therefore, care raust be taken to find this mode

- voltage, since as shown in (6); dipole current is proportional to-

the mode voltage and only théir ratio is useful in the design.

‘Another feature of using the moment method in the array
design is that the-information about the currents in the dipoles
can be obtained from the numerical process. This aspect is

147

Fig. 3. Comparison between theoretical and experimental resuits for the
input impedance of an EMC transverse dipole. ¢, = 2.17, ¢, = 2.17, H =
1.6mm,B =08mm, w; = Ilmm, w, = 2.2mm, Ax = 0, As = 4.5mm
and L = 12,4 mm.

- V"' Y

m

Fig. 4. Equivalent circuit of two parallel dipoles seen by a trangverse
microstripline.

particularly helpful, since one can use the dipole current
directly to design for the desired excitation instead of using the
equivalent circuit of the dipoles. This will be discussed further
in the next section. Other issues in this array design are how
the mutual coupling information can be separated from that of
the self-term and how this can be achieved without involving
the whole system at the same time. In order to solve these
problems, certain assumptions are necessary. It is assumed
that the self-admittance and self-current to mode voltage ratio
will be the same with or without the presence of other dipoles,
and that the mutual coupling between any two dipoles is
unaffected by the rest. These two assumptions are good jf
mutual coupling is not too strong [11], which is usually true
for practical arrays.

A method of computing mutual coupling of dipoles individ-
ually fed by a microstripline has been discussed in [7]. One of
the features of the array considered here is that the dipoles are
series fed by transverse microstriplines. The computation of
mutual coupling in this case requires a different approach from
[7). To find the mutual coupling information, one can consider
two dipoles fed by a microstripline and follow a numerical
method similar to that for an isolated dipole except for the
additional computation oi dipole to dipole reaction. The
equivalent circuit for these two dipoles is shown in Fig. 4. An
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Fig. 5. A seven-clement linear standing wave array. Elements are separated
by a guide wavelength.
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asymptotic extraction technique together with point source
approximation has been developed in [15] to compute effi-
ciently and accurately the reaction of two dipoles. After the
matrix inversion, the solution for the current in the line and
dipoles provides the total active admittance as well as active
currents of the dipoles. For the ath and mth dipole with
resonant spacing, the method of moments allows one to
compute the total active admittance
Yo, =Yit Y

lot

=Yt Youm F 2Ymn. (16)

The minus or plus signs depend on whether the dipole spacing
is an odd or even integer multiple of a half-guide wavelength.
From (16), if the self-adnfittance of each dipole is known, the
mutual admittance can be determined. The active currents in
the dipole 72 and 74, can also be obtained numerically and can
be described as

.l_:=.1_".".+ﬁ."£ (]7)
Vo Vo Va

and
—=—t-—, (18)
From (17) and (18) together with knowledge of the current

excited in an isolated dipole, the mutual current (Z,,) can be
obtained.
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Fig. 7. Coefficient function of the dipole versus offset sand length L. s =
032+ 0.12(k ~ I)mm, k= 1,2,3,-- 9. L = 11.91 + 0.025 (n —
Nmm,n=12,3,-7

IV. A DE&siGN EXAMPLE

The previous discussion of the design theory applies either
to a linear or a planar array. Here, a seven-element standing-
wave linear array will be designed to illustrate the design
technique. The geometry is shown in Fig. 5. A sum pattern in
the H-plane with a —20 dB sidelobe level was prescribed for
this array. The printed dipoles are series fed by a S0 Q
microstripline embedded in the middle of a substrate of
thickness 62 mil and permittivity 2.35. The design frequency
is 8.5 GHz and element spacing is chosen to be one guide
wavelength. All dipoles have the sarie width of 1 mm and the
offsets and lengths are to be found. The design curves for the
self-admittance Y,, and the coefficient function f, as a
function of offset and length obtained from the method of
moments solution are shown in Figs. 6 and 7, respectively. It
is found that, for the EMC transverse dipole, many basis.
functions are required to obtain adequate convergence. To
obtain each data point, 19 expansion modes are used in each
dipole, and piecewise sinusoidal modes of size of 0.04 guide
wavelength are used in the line. It is observed from Fig. 7 that
for different dipole offsets and lengths, the phase of £, is not a
constant. This implies that even for resonant spacing, to have
in-phase excitation, the dipole cannot be self-resonant. To
obtain a perfect match, the stub length Ax in Fig. 5 can be
suitably adjusted to tune out the total active susceptance.

The sampled data are used to construct the database such
that for a given offset and length the function value can
be obtained through a two-dimensional interpolation routine.
Mutual coupling between two dipoles is a function of dipole
lengths and offsets for a fixed spacing. It is found that mutual
coupling is not sensitive to a small change in dipole length.
Also from the results for no mutual coupling, it is found that
the lengths of all the dipoles are different by less than 0.2%.
Thercfore, in the mutual coupling computation, the dipole
lengths are held fixed. The mutual admittance and mutual
current as a function of offsets for one guide wavelength
spacing and fixed dipole length are shown in Figs. 8 and 9,
respectively. A similar procedure can be followed for a two
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Fig. 8. Mutual admittance of two dipoles versus their offsets. Element
spacing is one guide wavelength and L = 11.98 mm.
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Fig. 9. Mutual current of two dipoles versus their offsets. Element spacing
is one guide wavelength and L = 11.98 mm.

wavelength spacing, and so on. As a result, the interpolation.

or extrapolation method can provide the mutual coupling
information for any dipole spacing,.

The design data after a few iterations, including the self- and
mutual admittances are shown in Table I. The element spacing
is 23.6 mm and Ax = 9.68 mm. It is seen that the mutual
admittance is more than 25% of the total active admittance.
Theretore, it is concluded that even at one wavelength spacing,
the effect of mutual coupling should not be ignored. To provide
a confident check of the design data, the method of moments is
applied to the seven-element linear array. The results of active
admittance and current in cach dipole are shown in Table II
together with the results from the synthesis technique. It is
observed that the current amplitudes agree within 1 to 2% and
the phases agree within +1°. The admittance comparison is
also good.

The antenna array was built on a 12-in square Duroid board
as shown in Fig. 10. The measured return loss from the feed
line is shown in Fig. 11, The bandwidth of this array is about
4.2%. At the designed resonant frequency (8.5 GHz), the
measured VSWR is about 1.1. The agreement between the
theory and measurement confirms the importance of the

effects of mutual coupling. Both the desired and measured
radiation patterns in the H-plane are shown in Fig. 12, The
measured pattern is found to be in good agreement with the
design criteria. The asymmetry of the sidelobes is due to the
fact that the array is not symmetrically located with respect to
the edges of the finite array and therefore space and surface
wave diffraction at the edges contributes nonuniformly to the
radiation pattern. Another contributing factor may be the
limited accuracy of the photo-etching process in producing
identical microstrip dipoles and highly accurate interdipole
spacing.

V. CoNcLUSION

A synthesis method for the design of transversely fed EMC
microstrip dipole arrays has been presented. By using a
network representation, two design equations, which include
the effect of mutual coupling, are developed. An iterative
procedure using the conjugate gradient method has been
applied to solve the design equations. The design curves are
obtained numerically by the method of moments. The method
of computing mutual coupling is also described. It is found that

ula A seodbiss Ak
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TABLE 1
DESIGN DATA FOR A SEVEN-ELEMENT LINEAR‘ARRAY

Dipole Length in mm Yan Ymutual

No. |Offset in mm
1 0.5151 11.982 0.053§ +j 0.1040 | 0.014 + j 0.010
2 0.6834 12.000 0.0805 + j 0.0674.| 0.038 + j 0.023
3 ’ 0.8925: 11.983 .0.1422 + j 0.0093 | 0.056 + j 0.029
4 0.9500 11.973 0.1674 - j 0.0096 | 0.064 + j0.031
51 08925 11.983 0.1422 + j 0.0093 | 0.056 + j 0.029
6 0.6884 12.000 0.0805 + j 0.0674 | 0.038 + j 0.023
7 0.5151 11.982 0.0536 + j 0.1040 | 0.014 + j 0.010
Y, =-0.996 + j0.02 (result from iterations)
Y, = 1.000 — j0.04 (result from IES)
TABLE Il
DESIGN CHECK THROUGH AN INTEGRAL EQUATION SOLUTION

No. Desired Current 1ES Current

1 l.0000\< 0.0 1.0000 < ‘0.0

2 1.2751 < 0.0 1.2961 < -0.7

3 1.6810 < 0.0 1.6703 < -0.9

4 1.8351 < 0.0 1.8222< 0.3

S 1.6810 < 0.0 1.6730 < -0.7

6 1.2751 < 0.0 12971 <-0.3

7 1.0000 < 0.0 09940 < 0.7
The unit of the phase of current is in degrees
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¥
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Measured return loss of the designed antenna array.

to obtain a satisfactory design, one needs to include the mutual
admittance as well as the mutual current in the design
equations. The design of a seven-element standing wave linear
array is presented. The design data obtained from the synthesis

Fig. 11.

radiation pattern and input admittance also compare very well

procedure are implemented in a numerical experiment,
namely, solving the boundary value problem of the whole
array system. The input admittance and radiating currents
from this integral equation solution are found to be in good
agreement with the design goal. The measurements of the

with the design criteria.
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A FULL-WAVE ANALYSIS OF SHIELDED MICROSTRIP
LINE-TO-LINE TRANSITIONS '

T.S. Horng, H.Y. Yang, and N.G. Alexopoulos

Electrical Enginering Department, University of California, Los Angeles
Los Angeles, CA 90024

Abstract

A rigorous procedure is used to analyze sev-
eral microstrip line-to-line transitions in a shielded
multi-layer structure. The transitions studied in-
clude edge-coupled lines, overlay-coupled lines and
coupled-to-single lines. A power conservation check
based on a rigorous Poynting vector analysis is also
used to determine the accuracy of the numerical
convergence. The results of power distributions and
coupling coefficients of the line-to-line transitions
are studied parametrically to indentify the proper-
ties and applications of each transition.

Introduction

Proximity-coupled. line-to-line transitions are
important building blocks for high frequency inter-
connects. Applications in millimeter-wave integrated
circuits include high-pass filters, multiplexers and
directional couplers, Losch [1] has designed a broad-
band highpass filter in realization of an overlay cou.
pled line transition based on a quasi-static formula-
tion, A more rigorous full wave analysis for coupled
line filters associated with -the open structure has
been discussed by Katehi [2] for an edge-coupled
transition and by Yang and Alexopoulos (3] for an
overlay-coupled transition. In [3] a spectral-domain
approach by expanding the current in the coupled
line section with a combination of entire domain and
subdomain modes is used. This mode expansion
machanism seems to be the most efficient and fruit-
ful by far. For the advantage of preventing unnec-
essary interaction and radiation loss, a waveguide

housing is sometimes more common and practical
in the real circuit design. In this work, a full-wave
moment method is used to characterize shielded mi-
crostrip line-to-line transitions.

Method of Moments

Several different types of electromagnetically
coupled lines as shown in Figs. 1-3 are investigated.
The methodology applied here is in analogy to that
reported in [3], l'mwe'ver, the spectral Green's func-
tion and the numericai procedure are very much
different. Since the line-offset and the width of mi-
crostrips in shielded structures are comparable to
the waveguide dimensions, the transverse current
component should not be \neglected and complete
dyadic Green’s function of a multi-layer waveguide
is required. The integral equation after a Galerkin’'s
procedure can be converted into a set of linear equa-
tions, when expressed in matrix form'

(Zasss) (Z550] (Z22d) [ngl [Iznl 5':'5:

(1)
where each submatrix [ Z ], due to the presence of
both x and z directed currents, contains 4 subma-
trices, for example:

— [leuu] [lenul
[Z””] - [ [Zuun] [leun] ] (2)

and submatrix [ 7 ] and [ /™ ] contain two subma-
trices as follows:

[ll:]
[[zu..l lZﬁL] (Z120s) [z:;:. ::se
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Each element in these submatrices represents the
reaction of different basis functions. For instance,
the elements of {Z,;,,.;] are the reaction between
x-directed currents of subdomain mode associated
with microstrip 1 and z-directed currents of subdo-
main mode associated with microstrip 2. These sub-
domain modes are basically either PWS functions or
pulse functions. The entire domain modes are com-
posed of the reflected mnode, transmitted mode, and
incident mode which are distinguished with abbre-
viation ref, {ra, and inc, respectively. The computa-
tion of each element requires both infinite summa-
tion and integration in spectral domain and their
expressions are in the general form of:

[rie)

Alﬁluum ?.‘,.‘.,.‘.,(Om ﬂ)jﬂil(an)‘iilﬁz(aﬁ) .a,@)f,‘..,‘ﬂ)'dl’
()

and

u)uup‘q z

Guulfazam ﬂ)Juu\(aﬂ)J)luzan)fu'q@‘])lu; ‘df

(6)
where Gy, is the spectral-domain dyadic Green's
‘function. Superscript p identifies different entire do-
main modes. Ji;; is the Fourier transform of trans-
verse dependence and f%, Ji; are Fourier transform
of longitudinal dependence with respect to subdo-
main and entire domain modes, respectively.

Power Conservation Check

For shielded microstrip transitions, the con-
vergence of the moment method solution is very sen-
sitive to the type and number of expansion functions
chosen. Power conservation provides a nice way of
checking the accuracy of the solution. According to
the configurations shown in Figs. 1.8, the incident
power should be equal to the summation of reflected
power, transmitted power and some loss coupled to
the multi-layered waveguide modes, With proper
waveguide dimension, the loss coupled to the waveg-
uide modes can be removed and the expression of
power conservation can be aimply written as

o7 + 22

ITI’ = )

where Z,, and Z; are the characteristic impedance
of feed line and parasitic coupled line respectively.
A frequency-dependent method of computing the
characteristic impedance of both single and coupled
microstrip transmission lines described.in [4, 5] can
be used to determine the accuracy of the numeri-
cal results given in this work. In the present com-
putations of the transition problems, entire domain
modes of 3 guided wavelength and 9 to 18 subdo-
main modes are used in each microstrip line. The
convergence has been checked within 1% accuracy.
The power conservation is also checked with good
consistency. An example of this check is shown in
Table I.

Numerical Results and Discussions

From Figs. 5 - 11, the maximum coupling
occurs around oul = $A;, (), is the wavelength of
the odd-mode guided in the coupled line section)
with a wide frequency-insensitive range. This im-
plies that the transitions are broad-band and are

very useful in many MMIC applications. Besides,
from Figs. 5 - 8, the coupling efficiency is better in
overlay line-to-line transition than in edge coupled
line-to-line transition. This indicates the former will
be a promising element in realization of millimeter
wave high-pass filter.

Figs. 9 — 10 show the results for the case of
an overlay coupled-to-single microstrip traunsition.
It is seen that the even-mode coupling depends less
on the line-offset of parasitic coupled line, as com-
pared with single-line coupling. It is also noted that
the even-mode of coupled lines can couple energy to
a centered parasitic microstrip line while the odd-
mode can not, This may find applications in a phase
detector,

The frequency response of an overlay-coupled
microstrip transition is shown in Figs. 11 — 13. The
geometrical parameters are specially designed in the
coupled section where the line-width is much larger
than the spacing between two lines. It is seen that,
in a wide frequency range, the coupling coefficient is
almost independent of frequency. In addition, it is
possible to couple more than 95% of the total power
through the discontinuity. This geometry (so called




ovl Hzrzﬁ ITIz ovl | zo:—:lﬂz
- 0.05 1.000 0.13 0.97
-0.03 1000 0.15 0.999
<001 1.001 017 _{ 1.004
001 1.003 0.19 1.003
0.03 1.004 021 1.002
0.05 1.003 0.23 1.001

0.07 1.001 0.25 1.000
009 1.001 0.27 1.000

0.11 099 0.29 0.99%9

Table 1. Power conservation check for the configuration of
Fig. 2. Both IT1 and 171 are the same as those in

Figs. 7 and8.
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(2

suspended stripline) may be very useful due to these
two exce’lent characteristics.

Conclusions

In this work, a full-wave analysis is proposed
to develop a generalized dynamic model for several
types of shielded microstrip line-to-line transitions.
The results obtained from the method of moments
are checked within 1% accuracy by power conser-
vation. The results presented also show excellent
properties in some transitions and may find promis-
ing applications in MMIC coupler and filter design.
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The topic of this dissertation involves a dynamic modeling of frequency de-
pendent passive integrated circuit components. The first part of this disserta-
tion dcals with the characterization of microwave and millimeter wave
discontinuitics. The analytic approach is based on solving intcgral equations
with the method of moments. In the method of moments procedure, an exact
Green's function is used, which takes into account all the physical effects in-
cluding radiation, surfacec waves and high order mode effects. In order to
characterize the discontinuitics, a numerical scheme is developed to model
coupled semi-infinite lines. This involves using -both entire domain modes and

subdomain modcs as thc cxpansion functions to represent the fundamental
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propagating mode and higher order evanescent modes respectively. This type
of expansion mechanism is numerically efficient and particularly useful in
coupled line modeling.

Microstrip open-end and gap discontinuities in layered integrated circuits
arc studicd with emphasis on the material, radiation and surface wave effects.
The analysis is modified to study slotline short-end discontinuities in sand-
wichee structures. The advantage of using a slot line sandwich is also dis-
cussed. With the understanding of the simplest discontinuities in microstrip
and slotlinc circuits, the study is further extended to the line-to-line transition
which becomes increasingly important in monolithic circuits. Three types of
circuit transitions are investigated: microstrip-slotlinc transition, proximity
coupled collincar and transverse microstrip-microstrip transition. The appli-
cations of thesc transitions arc described and the validity of the developed
theory is verificd by experiments.

The sccond part of this dissertation involves the study of printed circuit
antennas which are special cases of integrated circuit discontinuities. The nu-
merical method for integrated circuit discontinuitics can be applied dircctly to
the printed circuit antenna structures. Four potential printed antenna archi-
tectures for millimeter wave monolithic phased array applications are dis-
cussed. These include a microstrip fed slot antenna, a slotline fed dipole
antenna, an EMC transverse dipole antenna and a microstrip fed slot coupled
dipole antenna. The features of each architecture are described.

Design techniques and procedures for microstrip dipole arrays transversely

fed by proximity coupled microstrip lines are also presented. Two design
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equations which include the effects of mutual coupling are developed. The
corresponding design curves are obtained by a rigorous integral equation sol-
ution. A scven clement standing wave linear array is designed to illustrate the
developed procedures. The data is checked by a complete integral equation
solution. of the array with excellent agrcement. The antenna pattern and input

impedance are also compared with the measurement with good agreement.
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Chapter I

Introduction

1.1. Integrated Circuit Modeling

Integrated circuit structures have been used for numerous electronics ap-
plications due to the features of low cost, light weight, easy fabrication and
reproducibility [1],[2]. The basic structure is composed of a grounded
substrate with various circuit components integrated on the air-dielectric
interface. In solid state clectronics, bipolar or field cffect transistors usually
requirc scmiconductor layers on top of the substrate [3] . This type of ge-
ometry is usually referred to as a layered structure. For frequencies below |
GHz, passive components, which include signal transmission path (wire),
inductance, capacitance etc, have been well understood using lumped circuit
concepts. However,.in the current state of the art, various applications require
the operating frequency of the device to go beyond the microwave wave or
millimeter wave range [4] — [7]. Microwave and millimeter wave integrated
circuits, in the current trend, have become increasingly important for both
commercial and military applications. When the operating frequency is high
cnough such that the device dimension is comparable to a wavelength, the
circuit componcents arc clectromagnctically coupled (EMC) together and the
design concept needs to be completely reformulated.  In the past decade, nu-
mcrous works have contributed to the investigation of the clectromagnetic

phenomena of microwave integrated circuits (MICs) and microwave
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monolithic integrated circuits (MMICs).  However, most of the published.

works arc confined to the characteristics of wave guiding structurcs. For this
reason, many discontinuit_‘V problems are not well understood and remain to
be solved [7]—[14]. From the design point of vicw, with the increasing
complexity of integrated circuits, accurate computer aided design (CAD) tools
are needed to determine preciscly the circuit performance. Thercfore, currently
and in the near future, developing accurate and efficient CAD algorithms
should be a primary concern for the microwave society [15]). The early re-
scarches on discontinuities problems were mainly based on the electrostatic
approximation duc to its simplicity [16] — [18] . This approximation (or so
called yuasi-static approach) is known to be valid in the frequency transition
from low frequencics to the microwave range.

A full wave spectral domain approach (SDA) for analyzing MIC disconti-
nuitics was proposed in the carly 1980s by Jansen [19] . Since this SDA was
originally proposed for waveguide applications, the integrated circuits arc as-
sumed surrounded by an cnclosed housing. Therefore, this approach has the
limitation that radiation and surfacc wave effects arc not included
[20] - [23]. Besides, in order to simulate the open structure, waveguide di-
mensions would usually be large which cause numecrical convergence problems.
Therefore, it is reasonable to conclude that the SDA is good only for
waveguide discontinuity problems or for open structurces with frequencics be-
low C band, where the radiation and surfacc wave cffects arc less important.

An intcgral cquation approach (1EA) was first proposed in 1985 by Katchi

and Alexopoulos to characterize MIC and MMIC discontinuities [24] . This
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approach is complete and rigorous in the sense that it simulates the physical
structure .and includes all the physical effects, although the applications of this
method are still at the beginning stage [25] — [27] .

The first part of this dissertation will be concerned with a rigorous exam-
ination of the method of moments solution of integral equations, in terms of
its accuracy, cfficicncy and applicability, to the characterization of MIC and
MMIC discontinuitics. Special numerical treatises will be developed to char-
acterize a class of semi-infinite line transitions frequently encountered in inte-
grated cireuits.  The derivation of Green’s function will be provided in Chap.
1. Microstrip open end and gap discontinuitics in layered integrated circuits
will be discussed in Chap 111, Numerical techniques adopted in this disserta-
tion will also be discussed in detail in Chap. 1. It will be shown in Chap. I11
that the developed numerical algorithm is general cnough to apply to many
related structurcs. The analysis developed in Chap. Il is extended in Chap.
IV to study slotline short-end discontinuities in sandwiched structures. With
cnough understanding of the simplest discontinuitics in microstrip and slotlince
circuits, the analysis can be further extended to the investigation of the im-
portant subject of line-to-linc transitions in intcgrated circuit structures, In
Chap. V a dynamic modecl for the microstrip-slotlinc transition is developed.
Two types of novel transitions are analyzed in Chap. VI, namely the EMC
collincar microstrip-microstrip transition and the EMC transverse microstrip-
microstrip transition. The potential applications of these transitions are also

described. The analysis is also confirmed by experiments.
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1.2. Printed Antenna Modeling

Intcgrated or printed circuit antennas (PCA) arc a natural evolution of in-
tegrated circuit components [28], [29]. The radiating clements may consist
of dipolcs, slots or patches. Since the invention of microstrip antennas back
to the early 30s [30]. extensive rescarches have been carried out worldwide.
Mathematical modeling was initially proposed in the carly 1970s with a trans-
mission line analogy [31], [32]. Later on, a cavity method and a quasi-static
approach were also applied to certain structures with some success
[33]-[37] . However, for frequencics above the microwave range, the
above mentioned methods will not be accurate due to their thin substrate ap-
proximation. Besides, these methods arc not applicable for printed dipoles and
slots, and do not include surface wave effects. A rigorous and almos.t exact
dynamic analysis of PCA was first performed at UCLA in 1979 [38]. This
approach is based on solving the Pocklington type integral cquation with the
mcthod of moments.  Since then, an cxtensive amount of work has been car-
ried out toward the efficient and accurate evaluation of this Sommerfeld-type
integral [39] — [44] . At the same time, fundamental propertics of PCAs
such as gain, cfficiency, bandwidth and antenna patterns have also been in-
vestigated in terms of various device paraméters [45] — [55]. Fundamental
radiation characteristics of a printed slot will be discussed in Chap. VII. The
propertics of a printed dipole and a printed slot arc also compared in terms of
the radiation cfficiency, surface wave cffects and radiation resistance.

Onc of the crucial parts in the design of printed circuit antennas is the de-

sign of feeding structures. Microstrip lines electromagnetically coupled (EMC)




to the radiating clements has proven to be the most versatile and convenient

type of feed for antenna arrays [56]. Rigorous analysis of EMC collincar

dipoles has been thoroughly investigated in Katehi’s and Jackson’s disserta-
tions [57], [58]. In the sccond part of this dissertation, several new feeding
structures will be investigated by a method of moments solution of coupled
integral equations. The current trend in printed circuit antenna technology is
to develop an architecture which is completely monolithic. In Chap. VIII,
four potential architectures for millimeter monolithic phased array applications
are discussed. The features of each architecture are decribed. These four
feeding structurcs arc a microstrip fed slot antenna, a slotline fed dipole an-
tenna, an EMC transverse dipole antenna and a microstrip fed slot‘couplcd
dipole antenna.

The ultimate goal in the analysis of printed circuit antennas is to provide a
design technique of microstrip arrays. Looking back to the past, the only rig-
orous and complete design of microstrip arrays was published by Elliott and
Stern in 1981 [59],[60] . In Chap. IX of this dissertation, a new type of
microstrip array will be investigated. The geometry is composed of dipoles
parallel to cach other fed by an EMC transverse microstripline embedded in
the substrate. The design of an antenna array requires the knowledge of cach
antenna clement’s size and position with respect to other clements and the feed
such that the desired excitation in cach antenna and thercfore the desired an-
tenna pattern can be achieved. Two design equations which are closcly related
to those developed by R.S. Elliott in waveguide slot array design [61] will be

discussed.  The corresponding design curves will be obtained numerically
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through a rigorous integral equation solution. In order to show how the design
technique works, a seven clement standing wave lincar array will be designed
to have the performance of 20 dB Dolph-Chebychev broadside sum pattern in
the H- planc. The importance of the cffects of mutual coupling will also be

addressed.
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Chapter 11

Analysis of Hertzian Dipoles in a Layered Planar Geometry

In this chapter, the electromagnetic fields due to an electric Hertzian
(infinitesimally small) or a magnetic Hertzian dipole are derived. These ficlds,
or so called Green’s function must be known before the method of moments
can be applied. This Green’s function for a layered planar gecometry is well
known as a Sommerfeld-type solution [62]. In section 2.1, the Green’s func-
tion for an clectric dipole is discussed. In section 2.2, the Green'’s function for

a magnetic dipole will be developed.

2.1. Green’s Function for an Electric Hertzian Dipole.

For the substrate-superstrate gcometry under consideration, the formu-
lation of the Green's function for a dipole embedded in the superstrate (Fig.
2-1) or in the substrate (Fig. 2-2) is different and will be discussed scparately.

The case for a dipole in the superstrate will be considered first.

(a). An Electric Hertzian Dipole in the Superstrate

The geometry shown in Fig. 2-1 contains a substrate with permittivity ¢, ,
permeability g, and thickness b, and a superstrate with permittivity ¢, and
permeability u,. The total thickness of the material is h. The dipole is located

atz = z, with b < z, < h and oricnted in the ¥ direction.
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Figure 2-2. An electric Hertzian dipole in the substrate.

Figure 2-1. An electric Hertzian dipole in the superstrate.
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The clectromagnctic fields in cach region can be characterized in terms of the

Hertz potential in the following forms:

ED = 270 4 v v (2.1)
and
H(l) = j(i)ﬁi 80( V x 7[.(1) ) - (2.2)

with i representing the region (i). From Sommerfeld’s work [62], it is known

that thc Hertz potential may contain only X and z components. In other words,
7 = rr_(xf)':\" + n(z’)’;}. (2.3)

The nice feature of using the Hertz potential is that its components satisfy the
scalar wave equations, where the solution can be obtained in a straight for-
ward manner. Through the usc of the Hertz potential, Maxwell’s equations

can be reformulated in the form of

vIED p T = L5 = 2o — 1 — 2) % 2.4)
= JWeEH

The lateral clectromagnetic ficlds in region i are related to the Hertz potential

through
(i) (i)
; ; on on
ED _ k20, 9 O Y ’s
. it éx " éx 0z ) (2-5)
(8 ()
, 5 on any
) = =X+ =5, (2.6)
év Ox éz
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E'zr(.i)
HO = joeg, - 2.7)
() . “'n'g) 5'7t£.l)
H, = _/(.‘)8[8(]( S - ix ). (2.8)

With the boundary conditions that E,. E,, H, and H, are continuous across
cach interface, and with the radiation condition at z — oo, one is able to obtain
an expression for the Hertz potential in the Fourier domain from eight
cquations with cight unknowns. The resulting Hertz potential in each region
can be summarized as:

Inregion0: # < =

0 1 © U gz h) i = xg) == 3) 13
nf\_) j J D'(/ oK l)c jii X xs)c -jiyy ‘}‘)dAxdly 2.9)

and

0) 1 J- »  jhyd) o~ =i =X RO = 3 ) (2.10)
Y —co e(’)Dm(’ Y

Inregionl: 0 £ z2< b

sinh g z e AET ) IS 2.11)

(|)____|_°° "”f](})
a YJ.

-0 O’.)

() _'_J‘m me h gz e VX=X A0 =I i ax (2,12
== y) | Dby e ‘ xfhy (12

Inregion2: B<:=:< H
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0 oo A iz (x iz (p—1p )
(2) _ )Lf J' S it = x) =it ) di dh, (2.13)

o 50 J-oo j}..}flz(/i) oI = %) e—j/'.y(v—ys)d,;xd,zy, (2.14)
—c0 Y—00 Dc(/')DﬂI(}“)

The functions f{2) and h{4) arc shown in Appendix A. Other parameters are

defined as follows:

91
D) = —————) €05 - b
{2) = qfq + P tanhq]b) cosh gx(h )

(2.15)
0 N (
hagsh — ¢
+a K2 H1q> tanh qlb) sinh q(h = 0)
and
,
(]2"5 )
D, (%) = T-(an + qu) tanh q}b) cosh gh — b)
(2.16)

4
11N~ qq tanh g,b
+ ((/??nl2 + K214 dl

) sinh q5(h — b)

2
1

where

i+ 4, (2.17)
g =A% -k, (2.18)

~
i

(’l ’ (2.]9)

V22— ki
0 = A2 = k3, (2.20)

11
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-

ky = @ HgE - (2.21)

kl = kU\/lllgl . (2'22)
ky = Ko Ha2> . (2.23)
Ill = .\/1181 ’ (2'24)
= s (2.25)
and

5
» = dnTjweas. (2.26)

(b). An Electric Hertzian Dipole in the Substrate.

When the dipole is embedded in the substrate, as shown in Fig. 2-2, the
clectromagnetic ficlds will be different from the case when the dipole is in the
superstrate, although the analytic procedure is very much the same. The
dipole in this casc is located at z = z, with 0 < z, < b and oricnted in the X
dircction.  The clectromagnetic ficlds in cach region can be characterized in

terms of the Hertz potential given in Eqs. 2.1 and 2.2 which satisfy the

cquation
viED 127D = L s(x - x )0 — p Wz — 2) % 2.27)

— Jwe g

The lateral clectromagnetic ficlds in region i arc related to the Hertz potential

through Eys. 2.10-2.13. With the same boundary conditions as the case for




a dipole in the superstrate, the Hertz potential in each region can be summa-
rized as:’

Inregion0: 1 < =

7:&2,) _ J*oo oofo()) —q(z h) —//x(x j/'.)-(V")r;)d).xd,:y (2.28)

and

(0) J“ oo JAJ (1) IO gz =) i~ xg) , J/}(} ) d) .(2.29)
oo DAMD,,f2)

Inregion1: 0 < z< b

(D) L[ o [1A) i = %) iy = 1)
= J j BE A=) IO =I) (2.30)

and

NI Im ro PR =) =5 g a1 (03
DDy S e e yclhy (2:31)

Inregion2: b <z < h

D = _LJ“ J‘“ S"A%) o EAx = X) =0 =5 1 2.32
\\ _yl D ()») X Ay (‘" ~)
and

Tt('?, _ 1 oo oo jA N A4) e‘fix(-“xf)e‘j;'y(’"y’)d/lxd) (2.33)

TV DAAID,A) 7
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}" = 47[2.]'(98]80. (234)

The functions f*{2) and /' {Z) are shown in Appendix B. Other parameters are

found in Eqgs. 2.15-2.26.

2.2. Green’s Function for a Magnetic Hertzian Dipole.

Slots in planar layered structures arc also considered in this dissertation.
The problem is formulated for the case where slots in a ground plane are
sandwiched by two layers on both sides of the ground plane. From the
Stratton-Chu solution of Maxwell’s cquations [61], one is able to sec that the
tangential clectric ficlds in the boundary can be viewed as sources which gen-
crate clectromagnetic ficlds inside the region of interest. These fictitious
sources, usually called magnetic currents, when placed in Maxwell’s equations
arc dual to clectric currents.  Maxwell’s curl cquations, with only magnetic

current sources arce

VXxE = -J, — jouH (2.35)
and
Vx H = joweE. (2.36)

These two equations arc constructed for the recason of mathematical conven-
icnce. The procedure of interchanging sources and boundary conditions is, in
fact, well known in the realm of partial differential equations [64]. For the
geometry under consideration, one can arguc that the electromagnetic ficlds

above the ground planc are due to magnetic currents (physically they are

14




electric ficlds) at a slot position infinitesimally close to the ground plane. The
samc arguments arc valid for the space below the ground plane. In this situ-
ation, the ground plane is in effect closed without any apertures. Therefore,
in the formulation of clectromagnetic ficlds in a half space (cither above or
below the ground plane). the electromagnetic fields on the othier side are irrel-
evant. The nice feature of this is that in the Green’s function formulation, one
can consider the geometry above or below the ground plane sequentially.
However. if the magnetic currents in the slots arc to be determined instead of
being known beforchand. the ficlds in the whole space will be related through
an additional boundary condition across the slots. This additional boundary
condition will lead to an integral equation which can be solved by the method
of moments.

The Green’s function for a magnetic Hertzian dipole is obtained by solving
Maxwell’s equations with magnetic currents replaced by a delta source ori-
ented in the X direction. Since the source is known, only the half space as
shown in Fig. 2-3 nceds to be considered. Due to gcometric symmctry, the
formulation for the other half space is the same. The electromagnetic ficlds in
cach region can be characterized in terms of the Hertz potential in the follow-

ing forms:

HO = 70 4 v vl 2.37)
and
E(l) = —j(.')lli [l()( V x ;t.(';l) ) (2.38)

s aas
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Figure 2-3. A magnetic Hertzian dipole in a

substrate-superstrate configuration.
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where i represents the region (i) and

20 = 0 A L A (2.39)

m mx- mz <
Through the use of the Hertz potential, Maxwell’s equations can be reformu-

lated in the form of

vERD ¢ ) o L = x50 ~ p)0(2) 3 (2.40)
— Jou

The lateral clectromagnetic ficlds in region i are related to the Hertz potential

through

s e g

(i L2 () C my s
HY = k). + A" =25, (2.41)
¥ dy ox iz " T
(i)
(i : CTlmz
EX' = — jouug (?;l (2.43)
and
~ (i) (¥
: an on
E(.') = — joua mx mz ) 5 44

Eq. 2.40 ¢can be solved subject to the boundary conditions at cach interface and
z— oo . The resulting Hertz potentials in cach region arc:

Inregion0: h < 2
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%o f 4 s ) —
W = o j fm(i/; A=) =) TR g (2.49)
I)
and
© _ I o oo JjAdtnd) o~ He=h) g=dx= XD 0- 1) 3 a1 (246
TUnz Tmd_, ooD'(/)Dn(/) e e xdA,. (2.46)
Inregion :0 < z< b
1 oo [ f 1(/) i A X)) (v
Al = A= AR N0 ), (2.47)

lm —eo Y—oo n(/)

and
O N b f o k@) sinhqiz s o) - dhedh. (248
Tinz Fmd_ ). DAOD) e e x dAy (2.48)

Inregion2:b < =< h

fo0 oo A
o = 5] fm:,((,; RO aa,, (2.49)

- V=00 I
(2) 1 [ = -/.)'.\j’m.?(":) —jrlx = %) _—ji Sy — ps)
My = —— —_— s/ e %y sS'dA dA.,. (2.50
me Ym —eo D2)D,{?) Y )
where

"-

Ym = dnTjoup. (2.51)

The functions £,,(4) and h,(2) can be found in Appendix C. Other parameters
are defined in Egs. 2.15-2.26.
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Chapter 111
MIC Discontinuities I -
Microstrip Open-end and Gap Discontinuities

in a Two-layer Configuration

3.1. Introduction

Microstrip open-end and gap discontinuities are useful in the design of
matching stubs and coupled filters. In recent years, layered integrated struc-
tures have found various applications in MIC and printed circuit antennas,
especially for monolithic applications. Therefore, dcsigr; data for open-cnd
and gap discontinuitics in layered structures would be useful. In this cl:apter,
microstrip open-end and gap discontinuitics in a substrate-superstrate config-
uration (Fig. 3-1 and 3-2) will be considered. The characterization of these
discontinuitics for a single layer has been performed quite extensively in the
past. Quasi-static analysis based on solving Poisson’s equation has been ap-
plied for low frequency applications [16] —[18],[65] . For higher fre-
quencics, models based on rigorous dynamic analysis are required. A
spectral-domain approach [19], [22] has been used to characterize the dis-
continuity problems with an enclosed waveguide housing. A dynamic method
based on solving integral cquations by the mecthod of moments has recently
been applied to the modeling of microstrip open-end and gap discontinuities
for a single layer case [24].[25]. This analysis takes into account all the
physical effects including radiation, surface waves and dominant as well as

higher order mode coupling. In [24], a finitc but iong microstrip linc with a
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Figure 3-1. An open-end microstrip line in a {wo-layer
structure.

Figure 3-2. Microstrip gap in a two-layer

structure.

20




e

v

& gap source is used, which typically requires many basis functions and is nu-
merically incfficient. In [25], a morc cfficient mcthod, using a combination
of the entirc domain modes and subdomain modes, is used. However, from the
discussion presented in [25], it scems that the method does not provide reli-
able results for the capacitance calculation. In this chapter, a revised analysis
of [25] together with a detailed discussion of the convergence of the solutions
is presented. Since, for the rest of this dissertation, the methodology adopted
here will be repeated. the analysis will be discussed in extensive detail in this
chapter.

A crucial step (and difficult) is choosing the proper basis functions to pro-
vide cfficient and accurate numerical computdtion. In the present problem,
modcling of semi-infinite lines is required. A combination of semi-infinite
traveling wave modes and local subdomain modecs is fruitful and can be mod-
ificd casily to adapt to diftferent geometrics. The traveling wave mode corre-
sponds to the fundamental guided wave mode of the microstrip line. The local
subdomain modes are used in the vicinity of the discontinuity region to take
into account the higher order mode cffects. For the transverse dependence of
the expansion functions, it is possible that with sufficiently high frequencics,
the simple Maxwellian or pulse function uscd in [24], [25] may not be a good
approximation when the dominant mode is not TEM-like. Therefore in this
analysis, the transverse dependence of the longitudinal current is obtained by
a two dimensional infinitc linc analysis where threc modified cosine-
Maxwellian functions arc used. The characterization of an open-end disconti-

nuity is through the open-end capacitance which is mainly due to the fringing
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electric fields [17]. When radiation and surface wave losses are considered,
a conductance should also be included in the equivalent circuit model. The
gap discontinuity can be modeled as a m network with two capacitances (see
Figs. 3-3 and 3-4). The loss mechanism can also be included by adding two
conductances in Fig. 3-3. The material effects of layered structures on the ra-
diation and surface wave loss, and the fringing fields at the discontinuitics will

also be discussed.

3.2. The Method of Moments and Matrix Formulation

The transverse current has been found in the past to be a few orders of
magnitude smaller than the longitudinal current for a strip width < 0.14, and
is neglected for simplicity [8]. Under such circumstances, the integral
cquation for the open end casc can be simplified in terms of the longitudinal
electric ficld on the microstrip:

0 w/2
Efx.y,z2) = _[ J. G Xy ¥y 2Xe Vo 29) JdXs y) dyd x, (3.1

—~o0 Y—w/2

where £, is the clectric ficld due to the current at z = z,.  The Green’s func-
tion G, is the valuc of E, on the (x, y) of microstrip due to an % directed delta
source at (x,.y,). This Green’s function has been described in Chap. 1l In
the mcthod of moment procedure, the unknown current distribution is ex-
panded in terms of a set of known functions. An cfficicnt way is to use a
semi-infinite traveling wave mode to represent the fundamental guide wave

modc of the microstrip line and to use subdomain modes

o
[ L8]
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Figure 3-3. Equivalent circuit of a microstrip gap.
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Figure 3-4. Top view of a microstrip gap discontinuity.
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(piccewise sinusoidal modes) to describe the current behavior in the vicinity of

the discontinuitics. Since the microstrip open end is a special casc of the gap

discontinuity, the formulation in the following will be for the gap case. The

open-end case will be discussed later. The current in the microstrip gap shown

in Fig. 3-4 can be expanded as
Jx. x) = Ax)J0)

with

N
My = e el o N f) forx<0,

n=1
_ N
Ax) = T o~ Rnl=9) 4 Z 15 8,{x) forx=s,
n=]

and

)
ay + a cos(:‘—:,r-y) + a, cos(JTg—_v)
J ((_V) = —_— ’

/ 2
o\ L= (2pw)

(3.3)

(3.4)

(3.5)

where T is the retlection coefficient from the discontinuity and T is the wave

amplitude of the transmitted wave. The layout of the expansion modes is

shown in Fig. 3-5. The paramecters k,,, a,, a, and a, arc obtained through an

infinite linc analysis, which involves solving a characteristic equation in a ma-

trix form [66] . The piccewise sinusoidal modes (PWS) arc defined as

sin kel(dl - Ix + Ildl I)
Sin Ky,

ffx) =

for |x+nd| < dy,

(3.6)
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and

sin k(,'l(dl - l.\' - Ildl - SI)

g,{x) = for |x = nd| - s| < d; (3.7)

sin keldl

where d, is half length of the PWS mode. The choice of k., can be quite ar-
bitrary.

When the expansion functions are uscd in Eq. 3.1, followed by Galerkin’s
procedure [63], integral cquations are converted into a st of lincar cquations.

These 2N + 2 cquations when expressed in matrix form are

[Zsc[f] [Zl.w:lf ] [Zcmct] [Zlcacl] [{‘l ] L/ inc, ]

= (3.8)
[Zecaa] [ZICdCl] [Zsclf ] [Zt.rclf ] [17?:] Ls incz:]

The matrix clements in cach submatrix can be expressed in the following
form after some tedious algebraic manipulations:

[Z,) is an (N + 1) x ¥ matrix with matrix elements

o foo

zm = f j Gl Ay) Fi0,) 430) coslam — mdy] ddgddy,  (3.9)
—00 T o0

[Z,e is an (N + 1) x 1 column vector with clements

Zl.?clf = J J. Gonldyes A_v) F lz('{y) P l(lx) Af2y)e S di, dh,, (3.10)
—o0T o0

[Z...c.)is an (N + 1) x N matrix with matrix clements




nm Rt e
Zecact = J \\(}‘:u" )Fl(/y) 41(’ x)

-0

cos[ A, (nd| + mdy — )] di,, diy

[Z,..]is an (N + 1) x 1 column vector with elements

n oo oo =y A 2 B -
Zlcurl = J f Gxx()'x’ Ay) F I('ly) P l(Ax)Al(/'x)
—0Q =00

cos[A (nd) — 5)] dA, i, ,

[Ii,,‘.'] is an (N + 1) x I column vector with clements

o 0
mq J f \:\(/\: y)Ff(} )01()Y)Al(/\)ejnd'/"d} d/

[/, is an (N + 1) x 1 column vector with elements

o0 (o o] ‘ "
”1('2 f J‘ '_\'? )‘y) Fi-()'y) Ql()'x) A l()‘x)

bl oo Ml o)

(.os[).x(ndl —s)]dx, dy,
where

(coskydy — cosi.d))
(A3 = k)

11%
Fi(A,) = Z i [/(,( Ay tkn) + Ity = kn)],
k=0

(.11)

(3.12)

(3.12)

(3.13)

(3.14)

(3.15)




bl ]

v

'_j;'_\’-r "()

Py4,) = [e %, + 1 sin k,,,,.\'ej’:*“tci.\', (3.16)
oo A
—j’.'xn 0 .e
o) = Le 2%, = /] | sin kX €77 dx (3.17)
and
v REPTRENRYT /3% S km J :
sin(k,,X)e 7 Fdx = ) + —2—[6(/"._,C—km) — oA+ k). (3.18)
0 Ax T R

The function G, is the Fouricr transform of the Green’s function. From Egs.
3.9-3.13. onc can sce that this Green’s function will play an important role in

the numecrical computations.

3.3. Numerical Techniques

Eys. 3.9-3.13 indicate two types of integrations. One is related to the PWS
and PWS modes reaction while the other is related to the traveling wave and
the PWS modes reaction. The case of the PWS and PWS modes interaction
will be considered first.  Eq. 3.9. after being transformed into polar coordi-

nates., can be written as

12 poo__
Zuh =4 Gl 2, Fi(A) AT(A,) cosLAm — n)ty] A didg (3.19)

where
. 2 22 2
—JjZy kY = A Ax
GydAg 2y) = [—————f}) + ————g ()], (3.20)
et = a3, pin 4 Dot
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A, = A cos, (3.21)
A, = A sing. (3.22)

The functions f, and g, can be obtained from the Green’s function discussed in
Chapter Il.

Eq. 3.19 involves a double integration. For the finite integral, a 32 points
Gauss quadraturc formula is used [57]. For the infinite integral, special nu-
merical methods arc required. One can break the infinite integration range
into two parts (0, A) and (A, oo) such that in the first section the integrand
contains singularitics or derivative singularitics, while for the second section
the integrand is well behaved but slowly convergent. The choice of A is quite
flexible, but it should satisfy A > max (k,, k,). The first intcgral contains sur-
face wave poles whenever Df4) or D, () become zero. If a pole extraction
technique is appliecd [39] in addition to the residue and Cauchy Principal
value, four sections of integrations are required due to the derivative
singularitics at 4 = kg, k, and k,. Another way to perform the integration
from 0 to A is to deform the contour off the real axis and apply the Cauchy
Ricmann theorem such that the integrand is well behaved [67]. This method
is particularly uscful in a multi-layered structure, since it is not required to
know the pole position and the integration has no singularitics. Both of the
above mentioned methods have been used and a negligible difference has been
observed.

The sccond integration from A to oo is the so-called tail integration. For

an asymptotic approximation, it is convenicnt to choose A such that
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tanh2b= 1 and tanh At = 1 , for 4 > A. If one studies the asymptotic behav-

ior of the Green's function G,(4,. ;) (omitting the term outside the bracket
of Eq. 3.20), onc can find that as 4 — oo, G, converges slowly when the test- ’ ;
ing and observation points are on the same planc (same z) and decays expo-
nentially otherwise. This is because the Green'’s function contains a singularity
in the spacc domain duc to the dclta source and converges slowly in the |

Fouricr domain. The dominant and first order asymptotic behavior of G, can

be summarized by the following:

Casc(a): z=c,=h=(b+1)

o] i
(Kofr=43%) ¢y — €A
e ryp) = -:qf " jf\ A L 131 )
- c Ic -

l + ¢
wherc ¢, = -(——2———) and g, = JA2— k.

Casc (b b<z=1z,<h

9 9
(K= 273)
G.\'.\'U _—(L—\"

oy Ay) + Ofc e"'(z"i’))
R 280/'(](., 2

where gy = & and g, = 22—k,

Casc(c): z=2,=0

2 42
(kejf— /'x) + €3 — C_‘)»x )

Gy 7)) ————
xx( X' 7y 280 jq(.’ pl 3
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(3.23)

(3.24)

(3.25)
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et

3w

(e + &) TR
————and q, = (A — k.

-

where g, =

Casc(d): b<z=2z,<h

2 .2
(I‘ef_' Ax

+ Oc. e’.'(b-z)) (3.26)
28ef/qe Aey

GxlA )'_v) =

where g, = ¢ and g, = \m .

It can be seen that the dominant term of the Green’s function is in the same
form for all four cascs, which, when transformed back to real space is E, due
to a delta current in the & direction in a homogencous space with an effective
diclectric constant e, The dominant term of the integral will be computed
separately.  This formulation will be discussed in Appendix D. It is seen that
the first order term left in Eqgs. 3.23-3.26 will enable the integrand in Eq. 3.19
to converge cither exponentially or in the order 1/4% and can be intcgrated nu-
merically in a straightforward way. It has been shown in Appendix D that if
k. in the PWS modes is chosen to be the same as k., the computations are
greatly simplificd.  Thercfore, throughout this dissertation, PWS cxpansion
modes arc chosen in this way.

The other type of integration is related to the PWS modes and traveling
wave mode reaction. When Eq. 3.18 is inscrted in Eq. 3.10, with suitable re-

arrangements, onc has

o 2k —j.x% . g
Zgoy = f > '"Az eI + j)e™ix 4(4,) S(A) di, (3.27)
v~ Km

-0 /4
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where

v, m — - " ‘, k)

S(lx) = f [ERN /.}.) F f(l}.) d/.},. (3.28)
—_l0

At a first look, it scems that Eq. 3.27 contains poles at 4, = #+ k,, which may
causc trouble in the numerical intcgration. However, as mentioned before,
k,, is obtaincd by an infinite linc analysis where the characteristic equation is
St~,) = 0. Therefore, onc would have S(k,,) =0 and the singularitics in Eq.
3.27 turn out to be removable. The integration in Eq. 3.27 after being trans-

formed into polar coordinates may be expressed as

,';;,1/~ = Zg(nd, - —75,-—) + jZ(','(ndl) (3.29)
=m
where
Zolnch) FIZJUD?W ) Fi(2,) Ay(A,) Hom _ cos 2 nd
ndy) = 1 A - ———— oS A
! o dy RS TRATAR 22—k X1 (3.30)
Adidp

It is obvious from Egs. 3.19 and 3.30 that the integral in Eq. 3.30 can be
computed numerically in the same manner as the one occurring in Eq. 3.19
cxcept for the tail integration. This difference is due to the fact that the trav-
cling wave mode is semi-infinitely long so the technique used for Eq. 3.19 can
not be applicd.  In other words, if the integration is transformed back to real
space, the integration over the half-infinite microstrip line will cause other nu-
merical convergence problems. However, due to the usc of entire domain base

functions, the integration in Eq. 3.30 usually converges better than the one in
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Eq. 3.19 because the integrand contains the Fourier transform of the entire
domain mode which decreases quickly away from the point where 4, is equal
to the phase constant k,. Further details in the asymptotic analysis of Eq.
3.27 by using branch-cut integration is shown in Appendix E.

Although the above discussion is for the microstrip gap case, the open-end
casc is also included. From the submatrices [Z,,.[ Z,] and [/, ] in Eq.

3.8, the information of an open-end microstrip line can be obtained.

3.4, Results

Usually MIC discontinuitics are characterized by their equivalent circuits.
Therefore. in order that the characterizion be meaningful, all the disturbances
of the current should die out quickly as one moves away from the discontinu-
ity. In microstrip structurcs, any discontinuity will gencrate radiating and
surface waves. These waves will also propagate along with the microstrip line 3
fundamental mode. Thercfore, when radiating or surfacc waves arc strong
cnough such that their interactions with the microstrip guided mode become 3
noticeable. the computed equivalent circuits will not be accurate. This implics
that, for this case, if one trics to measurc the ecquivalent circuits, the results
will be different at different reference plancs.

The equivalent circuit of a microstrip open end is computed from the re-
flection cocfficient which is obtained directly from the matrix inversion of Eq.
3-8. The convergence of the results depends on the size of the cxpansion !

functions and the region where subdomain modes arc used (see Fig. 3-5). An

example of a convergence check for the open-end conductance and capacitance
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for the number of modes used in a fixed subdomain mode region is shown in
Figs. 3-6 and 3-7. The subdomain region is chosen as 10 times the substrate
thickness. It is found that with only two modes a convergent result for the
conductance calculation has already occurred. However, the convergence of
the capacitance valuc is very slow with respect to the number of expansion
modcs.  The region where the subdomain modes are used is less important.
An cxample of this convergence check is shown in Fig. 3-8 where the basis
function size is fixed. It is found that the results are almost unchanged in a
wide range. Physically, this means that the higher order modes generated by
the discontinuity have alrcady died out in the testing region. The above con-
vergence tests are for the case that the radiating and surface-waves are weakly
excited. It is found that the results do not converge at all when the surface
waves and radiation loss are strong, due to their interaction with the microstrip
fundamcental mode. For a circuit to be uscful, radiation and surface wave loss
should be as small as possible.  With a careful convergence study, it is found
that, within the uscful frequency range, typically, 19 piccewise sinusoidal
modes of size 0.06 guided wavelength (0.6 guided wavelength in total) can
provide results within a few percent accuracy.  The validity of the current
analysis is further checked with the quasi-static method at low frequencies.
Fig. 3-9 shows the comparison between this analysis and the quasi-static
mcthod for a single layer case.  The substrate thickness is 1% of a frec space
wavelength which is thin cnough to insurc the accuracy of the quasi-static

method. The comparison yields very good agreement.
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Energy loss due to radiation and surface waves at a microstrip open end is
shown in Fig. 3-10 with and without a cover layer. The microstrip line in this
case is embedded between the substrate and the superstrate. It is found that
with the presence of the cover layer, the loss increases with the increase of the
superstrate dielectric constant due to stronger radiation and surface waves.
The length extension (or capacitance) at the open end due to the fringing field
for the same geometry as that in Fig. 3-10 is shown in Fig. 3-11. It is found,
by adding a cover layer, the excess length to substrate thickness ratio (or end
capacitance) is larger due to a st\rongcr fringing field. In general, the excess
length increases with the increase of effective dielectric constant and is inscn-
sitive to frequency except when the surface waves arc strong. The excess
length values for microstrip in a compositc substrate are shown in Fig. 3-12.
Two dificrent material arrangements were investigated which include the case
of a large permittivity on the top with a lower onc on the bottom and the case
of the other way around. It is found that the excess length value for the first
casc is significantly larger than the sccond onc. This implics that, when the
microstrip line is on the larger diclectric constant material, the fringing electric
ficld is stronger.

For the gap case, after a matrix inversion in Eq. 3-8 is performed, the re-
flection cocfficients I and transmission cocfficient T arc S, and §,, respec-
tively. Therefore, the admittance matrix of the gap discontinuitics can be

obtained by the following transformation

[v] =] - [shHed + sy (3.31)
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where [[L'] is the unitary matrix. By comparing the two-port = network and

Fig. 3-3. onc has

G, + joC

_LG__P T T (3.32)
0

and

G, + joC

S St S N (3.33)
Gy

The results for the gap discontinuity are first compared with thosc obtained
by the quasi-static method [18] and those obtained by mecasurcments [68]
and arc shown in Fig. 3-13. Since the gap capacitance is small and is sensitive
to the device tolerances, the measurement is inherently difticult to perform
accurately. In this analysis, the frequency is chosen to be 5 GHz. It is found
that this dynamic model agrees well with the quasi-static approach. Some
discrepancics for large gap spacing may be duc to the fact that, in such cases,
the amount of energy coupled through the gap is comparable to the energy
losses duc to surface waves and radiation, and this aspect is not includced in the
quasi-static approach. The gap conductances G, and G, arc shown in Fig.
3-14 for the same matcrial arrangements as those shown in Fig. 3-10. It is
found that the cover layer (superstrate) will increase conductance due to
stronger fringing ficld and more energy losses. Also since G, + jwC, repres-
ents the input admittance when a perfect magnetic wall is in the middle of the
gap, it is expecred that, due to image cancellation, G, will be rauch larger than

G, . Asshown in Fig. 3-14, G, is about two orders larger than G,. For a
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narrower gap. C, will be larger than C, duc to stronger end coupling. Hovw-
cver for wide gap spacing. the input admittance scen from cither side of the
gap is mainly the open-end admittance, so C, will be larger than C,. The re-
sults for the microstrip gap on top of the superstrate are shown in Fig. 3-15.
It is found that C,fw is more frequency dependent than C,/w, when the

dispersion is strong.

37




Sw

‘o

»

Coc:w (pF/mYy

G.Go

60

40

30

20"

10

0

0.006 )

0,005

0.004

0003

0.000

G ool

a0

.

T ) 1 1

¥
] 5 9 13 17 21 25
Number of PWS expansion modes
Figuie 3-6, Convergence test for open-end capacitance.

€= 9.6, b = 0,020 and wib = 1,

-

T 1 1 1 1
| b 9 13 17 21 28
Number of PWS expansion modes
Fipute 3-7. Convergence test for apen-end conductance.

£ =96, h = 0,022, and wh = 1,

38




Yo

Al
b

801
75
70"
:é 65 ]
i
e
3 60
3
(=)
© 35 _— wib=4
50
__________________________________ wib =1
45-
40 T T T T - T T 1
0.17 048 049 02 021 022 023 024 025 A
Subdomain mode region
Figure 3-8 Converpence test for open-end capacitance.
£y = 9.6, b = 0.02%,,
. —— this analysis
0.48 e—w. qQuasi-static analysis
042
0.36
0.3°
(24
0.18
012
0.06"
0.0 v ™ T Y T T T 1
0.0 08 10 .S 20 25 A0 35 40

wih

Fipwe 3-9. Excess length of an open-end microship line veisus microstip width,

£, = 9.6 and b = 0.01 A,

39




' 24

20

without cover layer
16 ] -=-=£5=22

12

power loss at open end in %

01 1 T T T T T ]

0 5 10 1S 20 25 30 35 40
Frequency in Giiz

Figure 3 10, Encrgy loss at microstrip open énd versus frequency.

£=96.b=03mm w=bandt=b.

0.7 ———— without cover layer
068 -——- Fy=22
064 e rz =006

-----
.
.

N e ot
B 051 et )

045

04

035 000 memmmsmssse--e--TTTTT

03-

0.25-

0.2 T 1 1 —X Y T 1

11
0 5 10 15 20 25 30 R3] 40
Frequency in Gliz

Figure 3-11, Excess length of an open-end microstiip line versus fiequency.

;=96 b-03mm w=bandt=b

40




<

Al
h

1.0
0.9

08"
0.7

£, = 2.2 and €, =128

_____ £y 12.8 and £y =22

0.6
05~
04
0.3
0.2
Ot

- mn e tw e e em e m— e e . -
e

0.0-

Figure 3-12, Excess length of an apen-end mictostip line veisus ficquency.

20 25 X a5 40 45 50

Frequency in GHz

b=t=h/72,h=03mmand wh =1,

0.03 )\ ——  this analysic

om-i\N ... quasi-static analy<ic

0.024- N o Bxperiment [12]

0.

0

B 0015

0

0.
0.
0.

021
IR

012
009

006-
003 -

0.0 tr—r—y— ) —r—y—r—— 1 T 1

1
001 008 NI12 D16 02 024 02X 012 036 04 044 048 052

Gap spacing (mm)

Figure 3-13. Gap capacitances versus gap spacing.
£, = B875. r, = 1, b = 0.508 mm and w = b.

41




*

radiation conductance (mmohs)

(pFsm

10 without caver fayer
—_———— = 2.2 .
i I fz=9.6 .-._.-". - -
0.1- :
0.01 -
0.001 -

T T 1 1 T T L 1

0 5 10 15 20 25 3B 40

Frequency in Gz

Figute 3-14. Gap conductances versus fiequency.
£,~96.b=03mm w=b,t=bands-= (.3762 b.

100 v
w| \
RO
70 —_— = 22mdc, = 128
6oy e r, =128 and £, = 2.2
S0
40
30 Gyw
20 /
10
I s SRR ' ...... . . ...... I}(‘,,/w
20 25 30 as 40 45 50

Frequency in Gllz

Figure 3-15. Nounalized pap capacitiance versus ficquency.

b=t=-h/2. h=03mm,w=hands=02h

42




-4

Chapter 1V
MIC Discontinuities I1-

Slot Line Short-end Discontinuities

4.1 Introduction

Slot linc was first proposed by Cohn in 1968 [69] as a waveguiding struc-
ture for MIC applications. The basic structure consists of a narrow slot in a
conductive coating on onc side of a substrate, the other side of the substrate
being interfaced with air.  The geometry of a slot line is shown in Fig. 4-1.
In order that clectromagnetic waves be confined in the vicinity of the slot, the
permittivity of the substrate is usually high (> 10). This slot line structurc has
been used in filters, couplers and circuits containing semiconductor devices
[703, £13]. Since the clectric ficld of the guide wave is approximately trans-
verse to the wave propagation direction, the fundamental modce is TE-like.
There is no cut-off frequency for this structure, since the slot scparates two
semi-infinite ground planes. Slot lines can also be included in microstrip cir-
cuits by ctching the slot circuits in the ground planc. With the slot and
microstrip combinations, many circuits have been realized; for example, hybrid
branchline directional couplers [71] and microstrip bandstop filters [16].
Other discontinuitics, such as the microstrip-slot transition for a two-level cir-
cuit design, and rcsonant slots for antenna applications, will be discussed in
Chaps. V and VII respectively. The characteristics of a slot line including its
propagation constant and characteristic impedance have been studied cxten-
sively [71] — [74]; however, analytic methods for slot line discontinuities are

-
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scarce, especially in terms of including the radiation and surface waves effects.
This slot line short-end discontinuity, as shown in Fig. 4-2, is the most com-
monly seen discontinuity in slot line circuits [74]. It can be used in the design
of matching networks, filters and couplers. Since the current will flow near the
end of the slotline, there is an apprecialble amount of energy storage beyond
the termination.  The end discontinuity will cause radiation and generates
surface waves. Without the image cancellation, energy storage and losses are
more severe than in the microstrip line case, and this end cffect has to be ac-
counted for in accurate circuit designs.

In slot line structures, the larger the effective dielectric constant, the more
the energy is confined to the vicinity of the slot. If the other side of the ground
plane is covered by a diclectric material (instcad of being free space), the cf-
fective diclectric constant of the slot line will increase. This offers the advan-
tages of shorter wavelength, greater confinement of electromagnetic ficlds, and
stronger coupling between slot line circuits [16]. The geometry of a short-end
slot line sandwich is shown in Fig. 4-3. The comparison of the end cffects in-
cluding fringing, radiation and surface waves between a slot line and a slot line
sandwich will be provided in this chapter.

The analysis of slotline discontinuitics is almost a one-to-one correspond-
ence with microstrip discontinuitics. The numerical methods discussed in the

previous chapter can be modified and applied to the slot line structure.
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4.2. Integral Equation

Since the onc layer slot line is the case of the slot line sandwich with
¢, = I, only the analysis for the latter case will be discussed. For the short-
end slot line under consideration, an integral equation can be formulated in

terms of a transverse clectric field in the slender slot, viz.,

0 w2
Hx,y,z=0") = J. J Gxy ¥Ixp o) Efxg yo)dyd xg, (4.1)
—oa Y—w[2
and
3 ] wf2
Hix.y,z=0") = j J Gy~ ylxg ) E}.(xj, v dydx, (4.2)
—o0 Y—w[2
with
H{x.y,z=0%) — H(x.nz=07)= 0 (4.3)

on the slot line, where H, is the magnetic field due to the electric field on the
slot line. The Green's function G,, can be found from Eqgs. 2.47 and 2.48 of
Chap. II, while G, due to symmetry is equal to Gy, except the sign and mate-
rial parameters. Integral equation in Eq. 4.3 can be solved by the method of
moments. This procedure is the same as that for the open-end microstrip line.
4.3. Results

From Schelkunoff’s cquivalence principle, the clectric ficld in the slot is
cquivalent to the magnetic source in the ground plane. From image theory
[61], the magnetic source and its image have the same magnitude and phase.

On the other hand, in the microstrip structure, the electric cusrent and its im-
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age arc 180¢ difference in phase. Therefore. the slot line circuits tend to radiate
morc energy than microstrip circuits.  An example of radiation and surface
wave losses at a slot line short-end in terms of total incident power versus fre-
quency for three different slot widths is shown in Fig. 4-4. [t is seen that the
energy losses increase with the increase of slot line width or frequency. This
is because, by increasing the frequency or slot width, less energy is confined
near the slot. The above discussion also explains the result in Fig. 4-5 where
it is shown that the normalized reactance duc to fringing increases with the
increase of slot width or frequency. It is seen from Fig. 4-4 that, for the
substratc with ¢, = 12, when the substrate thickness is about 0.064,, more
than 25%% of the incident power is lost at the short end for all the three slot
widths.  Fig. 4-4 provides an idea of the upper frequency where a slot line
circuit is still useful. It is also obscrved that cven for a thin substrate thickness
(0.014,), the radiation and surfacc wave losses are 5 to 10 % of the total inci-
dent power.  This is onc of the main disadvantages of this one-sided slotline
structure.

By adding a cover layer on the free-space side of the slot line, the guide
wavelength will decrease and more energy will be confined near the slot region.
This implics that the characteristic impedance will decrease. The result is, that

with a unit voltage wave incident to the slot line, the total incident power

57 will increase quite noticecably (typically, 5 to 16 %). On the other hand,
—0
for a unit voltage wave, the radiation and surface wave losses at the short end
incrcase only slightly when a layer is added. Therefore, it is expected that the

amount of the energy loss at the discontinuitics can be reduced by using a slot
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line sandwich. An example of this result is shown in Fig. 4-6. It is scen that
the radiation and surtace wave losscs are greatly reduced. It is also scen from
Fig. 4-7 that, by using the slot line sandwich, the fringing ficlds and normal-
ized recactance increase duc to the higher cffective diclectric constant and to
more energy being confined near the slot line. This implies that the coupling

between slot line circuits is enhanced.
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Chapter V
A Dynamic Model for a Microstrip-Slotline Transition

5.1 Introduction

Bascd on the approach described in the Chap. 11, a dynamic model for a
microstrip-slotline transition and its related structures (such as a microstrip fed
slot and a slotline fed printed dipole) is proposed in this chapter. The devel-
oped model, with some modifications, can be applied to other types of transi-
tions in MIC and MMIC dcesign. Some of these examples will be discussed in
the next chapter.

In a microstrip-slotline transition, a short-circuit slotline which is etched on
onc side of the substrate is crossed at a right angle by an open-circuit micro-
strip on the opposite side.  This type of trdnsition makes a two-level circuit
design possible [16]. Somce experimental work has been reported [13], [75]
and a transmission line circuit model has been described in [76]. Ia the
present approach, the radiation and surface waves due to the cross-junction,
the line discontinuitics, and all the mutual coupling duc to the dominant mode
as well as higher order modes of cach line are included in the method of mo-
ments solution. The VSWR and input impedance of the transition, can be
determined by the currcn-t distribution on the microstripline in conjunction
with transmission linc theory. In the formulation procedure, certain impor-
tant problems in MIC, MMIC or printed antennas design can also be solved.

This aspect will be discussed in Chapter VIIIL




5.2. Theory
(5.2.1) Green'’s Function Formulation.

The microstrip to slotline transition is shown in Fig. 5-1 and the cross sec-
tion is shown in Fig. 3-2, where the lincs arc extended a certain distance be-
yond the cross-junction, so that their extension may act as a tuning stub. Due
to the assumption that the strip or slot is slender, the transverse vector coms
ponents (J, and M,,) on the lines are a second order effect, and are neglected
for simplicity. Therefore, only the X-directed clectric surface current J, on the
strip and the p-directed magnetic surface current My, (x-directed electric field
E,) arc considered. Under the above assumptions, the coupled integral
cquations can be formulated in terms of E; and H,. As a result, the electric

E, at (x. vy, d) duc to the presence of both strip and slot is

E, = ” Gy Jy clsy + ”ny My s (5.1)

and the difference of the magnetic ficld H, at (x, ¥, 0*) and at (X, y, 07) is

AH, = Hayx Jods, + H Gy My s, (52)

where G,, and Gy, are the dyadic Green’s function components due to an X -
directed infinitesimal clectric dipole at z=d and G,, and G,, arc the dyadic
Green’s function components duc to a § - directed infinitesimal magnetic
dipole at z=0. J, is the current on the microstrip s, while M, is the magnetic

current (clectric ficld) on the slotline s, .
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The dyadic Green'’s function components G,,, G,,. Gy and G,, can be derived

from Eqs. 2.13-2.14 and 2.47-2.48. The results can be cxpressed as

foo oo

G, VX, ¥,) = Gl 1) %) @i =30 (53)
oo
foo [O0O0 __ i ( ) =)

Glx, ¥lxp 3,) = Gylhy Ay) e/ 5050 e/ = o), (5.4)
)

Gy, ¥lxp ¥,) = = Gyylx, yixg y,) (5.5)

and
o foo _ . s

Gt 315 1) = | [T Gl 1) 0= (5.6)
-0 OO

where

. 2 2 2 .
- . . -jZ ki — A% Az q (1 —¢,)sinh qd
G (s ,4,},) = 0 [ ] X x 11 r l

} sinh q,d,(5.7)

47!2/\'08, Df2) Df#) Dp(4)
2 .
= -1 Ax(er — 1)sinh(q,d) .
G (Ao X)) = + , 5.8)
wE 4n> [ D7) Df2) D,f2) (
= ) - 2 2, 9) cosh id + ¢,qsinh qd
G..()._,/..):———-[(kl = A3)
e 4n220k0 Y 71 Dpf4) 59)
5.
Bay(l—¢) . (k2 - 2
D) D,(A) q '
and with
Dy2) = q sinh(q,d) + ¢ cosh(qd), (3.10)




D,(%) = q, sinh(q,d) + ¢4 cosh(qd). (5.11)

Other pertinent parameters have been detined in Chap. 11

(5.2.2) The Choice of Expansion Modes.

In the method of moments procedure, J, and 1/, are expanded in terms
of a set of known functions. For the transition under consideration, the mod-
cling of two half infinitc lines is nccessary, in which several mechanisms are
possible. It subscctional expansion modecs arc used in the two finite lines with
a § gap source, in order to characterize the cross- junction of this resonator,
two sets of wave amplitudes on each line corresponding to two different length
of the parasitic line, are required. This scattering matrix formulation has been
found to be very sensitive to error. A more reliable method is to simulate the
physical situation where both the microstripline and the slotline are terminated
by a matched load. In this scheme. subscction expansion modes are used in
both lines near the cross-junction region, while entire domain travelling waves
are uscd to represent the transmitted wave in the parasitic line (slotline) and
the incident wave and the reflected wave on the feed line (microstripline).
Other choices of expansion modcs are also possible, such as using subsectional
basis functions in the feed line and subsectional modes and traveling wave
modes in the parasitic line, or the traveling wave modes starting away from the
cross-junction such that thc mutual coupling of travcling wave and PWS

modes on different lines is negligible. These types of expansion modes have
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some advantages in numerical analysis and will be discussed in the next sec-
tion.

The traveling wave modes used involve microstripline and slotline propa-
gation constants k, and k,. From the knowledge of k,, and k,, the unknown

current distribution on the microstripline can be expanded as

N
fxy = 17 1 Y 1 fx) (5.12)

n=1

while the unknown clectric field distribution in the slotlinc can be expanded

as
M
) = 1"+ ) Eugdv) (5.13)
n=1
where
jinc = o e (5.14)
IR VLT (5.15)
and
= T ek (5.16)

Piccewise sinusoidal (PWS) modes are used as subsectional expansion modes
and arc defined starting from the end of cach line. These modces were shown

in Egs. 3.6 and 3.7.
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(5.2.3) The Method of Moments and Matrix Formulation

The coupled integral cquations can be obtained from Egs. 3.1 and 5.2 by
forcing the boundary conditions that the E- ficld must be zero on the
microstripline and the H- ficld must be continuous across the slotline. When
when the expansion modes are substituted into Egs. 5.1 and 5.2 followed by

Galerkin’s procedure, onc has

l:Z.rclf 1L leclf 1L Tmeact][ Tlmcacl] Elg‘ L/ incJ

= (5.17)
[Tcmacz][ Tlemaa] L Yself ] L Ylsclf] [f'] L Vlra:I

where the submatrices are the reaction between different expansion modes,
[7] is an N x I column vector with elements /;, Jy, woeee , Iy, and [E] is an

M x 1 column vector with clements E,, E,, ..., Ey.

(5.2.4) Some Aspects of the Numerical Analysis.

The formulation in the last section is quite flexible and can be easily modi-
fied to other types of mode expansion mechanisms.  For example, the traveling
wave modes may start more than a wavelength away from the cross-junction,
which modifics the Fourier transform of the traveling wave mode in the above
formulation. This type of expansion has the advantage that the mutual cou-
pling between traveling wave modes and PWS modes of the other line (
[ Temacr] and [ Tpeae ) is negligible.  Therefore, the computation cffort in Egs.
5.17 can be reduced.  Besides, the solutions are automatically convergent in
the sensc of the number of expansion modes. Another type of expansion is also

possible where only PWS modes are used in the feed line. This has the ad-
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vantage of providing some insight into the current distribution on the feed line
and of avoiding the computations of the submatrices [ Y] and [T, in
Eq. 5.17. The above different mode expansion mechanisms may also be used

to check the convergence and stability of the solution.

5.3. Numerical results

The results for a microstrip-slotline transition have been obtained based on
the developed algorithm. The numerical analysis was performed on the IBM
3090 system. Typically, for cach data set it takes about one minute and thirty
scconds of computer time in contrast to a half sccond to obtain the propa-
gation constant k,,, although a lot of cffort has been made to reduce the com-
puter cost. An cxampic of a 50 © microstripline to a 80 Q slotline transition
is given. The results of the VSWR and input impedance arc shown in Figs.
5-3 and 5-4 respectively.  The results for the VSWR are first checked by
interchanging the feed line and parasitic line. The differences in [T} are within
2%, which is consistent with the property of low loss two port networks. The
complex reflection cocfficient that is obtained is checked further by changing
the number of modes and different mode cxpansion mechanisms as described
in the last scction, Two sets of input impedances with diffcrent numbers of
expansion modes and base function size are shown in Fig. 5-4 to illustrate a
convergence test example.  With the particular device parameters chosen it is
found that both the magnitude and phasc of the reflection cocfficient converge
very well (2 % in |I'] and 5° in phase ) for d < 0.0364,. However, for higher

frequencics, the results are more unstable, and typically the results are 5-10
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% accurate in |I'| and 10-15 degrees in phase before higher order modes turn
on. This behavior may be due to the reasons that 1), when the radiated and
surface waves aré not weakly excited, the transmission line theory applied to
the microstripline or slotline is only an approximation and the mode expansion
approach is somewhat of a brute force. 2), the transverse vector components
(J, and ) which are ncglected in the present investigation become more im-
portant as frequency increases. The VSWR obtained by the transmission line
circuit model [76] and the measurement [75] are also shown in Fig. 5-3 to
provide a comparison. In the transmission line circuit model the stub length
is assumed to be measured from the center of each linc and the propagation
constants k,, and k, and the excess length are obtained from the current anal-
ysis. It is scen from Figs. 5-3 and 5-4 that the present method agrees very well
with the circuit model in the low frequency range. The discrepancy for higher
frequencics is probably due to the higher order modes, surface waves, and ra-
diation cffects which are neglected in the circuit model. The measurements
reported in [75] show a wider bandwidth than that of cithér the circuit model
or the present analysis. It is believed that the accuracy of the device param-
cters, the non-ideal matched load and (especially), the coaxial to microstripline
transition affected the frequency-dependent results in the measurement. Be-
sides, the material used in [75] is Custom HiK 707-20 {¢, = 20) which is
usually very lossy especially for higher frequencies. These effects may explain

the discrepancy between theory and experiment.
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Chapter VI

Proximity Coupled Microstrip Transition

in Double Layer Integrated Circuits.

6.1. Introduction

Analytic and numerical methods described in the previous chapter-are ex-
tended here to study two types of proximity coupled open end microstriplines
in a double layer planar structure. These proximity coupled transitions con-
stitute potentially important components for MIC and MMIC design. Fig. 6-1
shows two semi-infinite collinear microstriplines at different levels. This type
of transition has the advantage over the end coupled lines in that the overlap
distance [, may be used to control the coupling. Also this transition provides
a widet range of coupling cocfficient with a rcasonably large bandwidth and
it therefore is useful in coupler or filter design. Fig. 6-2 shows two EMC
transverse microstriplines.  In this type of transition, an open-circuit
microstripline printed on top of the superstrate is crossed at a right angle by
another open-circuit microstriplinc embedded on the substrate. These two
lines are extended a certain distance beyond the cross-junction to provide
tuning stubs. This type of transition has the propertics of broadband and good
match duc to the presence of the double stub. The materials in the substrate-
superstrate configuration may greatly affect the coupling in the transition and

this issue has also been investigated.  In Section 6.2, the method of moments

solution of integral cquations is formulated. In Scction 111, the results
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Figure 6-1. Proximity coupled collinear microstrip-microstrip transition.
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from the numerical analysis are presented and some interesting properties of

the above-mentioned transitions are discussed.
6.2. Analysis

(6.2.1). EMC collincar microstriplines.

Integral cquations for EMC collincar microstriplines are

,
ED = Zj j Gy /s, (6.1)
j=1

where £49 is the clectric ficld at microstrip i,1 = 1 or 2. Here microstrip 1 is
at z = b while microstrip 2 is at z = h. The Green’s function Gy is E; at (X,
y) of microstrip i duc to an X dirccted dclta source at (x, y,) of microstrip j.

This Green's function has been derived in Chap. II and can be expressed as

oo oo i A= %) —jily=p
Gij _ I I D lj( A 'iy) o IAdX= X5) =iy ¥) d'ixd'{y (6.2)
—00 Y—00
where
, 2 2 2
. ~JjZy k3 — A A;
Dy dy) = ——e [ L) 4 g ) (63)

47[2/((,82 De(}') De()‘)Dm(A)

The function f; and g; can be identified from the Green's function described
in the Chap. II. Other parameters are defined in Egs. 2.20-2.31. When the
expansion modes (similar to thosc in Chaps. 11l and V) are used in Eq. 6.1,

followed by Galerkin’s procedure in the same way as described in the last
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chapter, integral equations are converted into a sct of linear equations. These

M + N +2 cquations when expressed in matrix form are

[Z:e{/', ] l:Zl.tclﬁ ] [Zceaclz] [Zleaclz] [_IllJ [/ inc, ]

= . (6.4)
CZeeact U Zicaet (Zeepd [Zesd || Y2V | | i

" The computation of each matrix clement in Eq. 6.4 requires a double infi-
nite integration where the intcgrand contains the corresponding Green'’s func-
tion D4, 4,) and the Fouricr transform of the current expansion functions.

For example [ Z,0,,] is an (N + 1) x M matrix with matrix elements

zmm = I I © Dy Ay FoAy) Fi(A) A\(dy) AxA) 65)

cos[ A (nd) + mdy — [,)] dA,. d2

x @iy

where [, is the microstrip overlap length, and all other parameters in Eq. 6.5

has been described in Chap. 1.

(6.2.2). EMC transverse microstriplines.

The analysis of EMC transverse microstriplines is almost one to one in
correspondence to the collinear case. In matrix formulation, if local coordi-
nates arc used, it can be casily shown that the self reaction in each microstrip
is identical for the collincar and transverse cases. To be more specific, the in-

tegral cquations for the transverse microstriplines arc

EY - f chxfg')d,l + ”GXJJ;Z) ds (6.6)
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and

L ”G)\Jﬁ”d + ”G JDd, (6.7)

where £ and E{? are the longitudinal clectric ficlds at microstrip 1 (at z =
b) and microstrip 2 (at z = h), respectively. The function G, equals to G,,,
while G, is the same as G,, except 4, and A, are interchanged in D,,. Other

Green'’s functions arc

~

= J- J. ny().x‘ }')’) e"'j/'-x(JC— x;) e—j;-)(}'“ys) di xd)‘y ) (6.8)
and
ny = ny (6.9)
where
- JZ - )"c’l )‘x}'yqz .
(P dy) = [ + =g AA)]. 6.10
oty = 7y ) + 3 g 1o

The mode cxpansion mechanism and the method of moments procedure follow
in the same manner as for the collinear case. The final matrix is in exactly the
same form as Eq. 6.4. The submatrices [ Z,,] , [Z,] with i = 1 or 2 and
[ mq] arc identical for the collincar and transversc cases. All other subma-
trices can be obtained in a similar way as for the longitudinal coupling case.

For example,
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o e - J‘: J: D, iy &) FiA) Fi(Ay) A1) Ax(3,)

sin[4,(nd) — lpy))] sinl4mdy — 1)) d2, di,.,

~

where [ Z,,,c, 1 is an-(M + 1) x N matrix, The parameters /,; and /,, are the ‘

stub length for microstrips 1 and 2 respectively. Sine function in Eq. 6.11 in-
stead of a cosine in EqQ. 6.5 is because the Gréen’s function in Eq. 6.11 is an

odd function of cither A, or 4.

6.3. Results

Although the impedance matrix in Eq. 6.4 looks formidable, the computa-
tion can be simplified further based on some physical insight. For example,
the Green's function and basis functions are the-same in each submatrix except
for a translation in recaction center. Thercfore in the numerical process, these
common factors nced to be computed only once. Also due to reciprocity, only
a fraction of the impedance clements neced to be computed. In the computa-
tions for the transition problem, entirc domain modes of thrce and a half
guided wavelength long and cight to thirteen PWS modcs (depending on the
overlap or stub length) arc used in cach microstripline. The convergence has
been checked for S, (I0), to within 3% in magnitude and 3¢ in phase. The
magnitude of the reflection coefficients is shown in Fig. 6-3 as a function of
overlap for the collincar transition with three types of material arrangements.
The corresponding microstrip width is chosen such that the microstrip lines
have a 50 Q characteristic impedance. For the case of a large diclectric con-

stant matcrial in the substrate and a smaller one in the superstrate, since en-
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Crgy is moS"il_v confined in the substrate, less power is transmitted than that of
-other types of material arrangements. This behavior is observed in Fig. 6-3.
From these two ﬁgufcs, one can see that the coupling coefficient depends on
the amount of cnergy of an embedded microstrip -stored in thg superstrate.
The relationship between overlap length and power distribution observed in
Fig. 6-3 is not obvious. It can be explained empirically as follows. The
amount of current induced in the parasitic line is mainly due to the longitudi-
nal clectric ficld gencrated by the open cnd feed line. This current varies
sinusoidally and dccrcases as the observation point moves further away from
the open end.  Thercfore, as the two microstrips arc brought closer, increased
coupling occurs, As the coupling gets sirongcr, the clectric ficld due to the
parasitic line will intecract with the feed line ficld. Since these two
microstriplines have different fundamental modes, as the overlap increases
further, the coupling starts to ’dccrcasc duc to wave destructive interference.
It is interesting to sce that with a particular overlap length, very little coupling
occurs.  This behavior is found to be related to the superstrate thickness and
diclectric constant. It is also obscrved that as the overlap gets larger, the re-
flection becomes smaller. This implics that in such a casc, the guided funda-
mental mode is more like the coupled line mode. It is further found from Fig.
6-3, that in a certain region where coupling reaches a local maximum, the
scattering matrix is insensitive to overlap length. Since the line impedance and -
cffective  diclectric constant arc also frequency insensitive, in this microstrip
transition, only the cffective overlap length will be frequency sensitive. This

implics that this transition is broadband. An example is shown in Fig. 6-4.
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Onc can sce that the scattering parameters change no more than 3% in mag-
nitude for this particular X band computation.

For the transverse microstrip transition, the matérial also has a strong effect
on the coupling mechanism, as shown in Figs. 6-5 and 6-6. The coupling be-
tween two transverse microstrips is further complicated by the presence of the
two tuning stubs. The cffect of these two stubs is very much different from
those in the microstrip-slotline transition where optimum coupling occurs when
both stubs arc about a quarter wavelength long.  For the transverse microstrip
transition, the coupling is minimum when either stub is about a quarter
wavelength and is maximum when both stubs are a half wavelength long.
This phenomenon is duc to the fact that the parasitic linc, from a circuit point
of view. is a shunt clecment to the feed line, and vice versa. Therefore, when
both stubs arc a half wavclength long, the circuit (looking from the cross
junction) is in resonance, whilc when cither stub is about a quarter wavelength
long. the circuit is in cffect shorted. For the paramcters in Fig. 6-5, the guide
wavelength for each microstrip is approximated as 4,, = 0.5474, and
iy = 05074, , whilc in Fig. 6-6, thc guide wavclength is 4,,, = 0.3214, for
microstrip | and 4,, = 0.3604, for microstrip 2. In Fig. 6-5, maximum cou-
pling occurs when both stubs [, and /,, arc about a half guide wavclength\
long. In this particular casc, one can see that the VSWR of this transition can
be as small as 1.1. Thercefore, this transition can be potentially uscful in a two
level circuit design.

To verify the analysis, a 3 inch by 3 inch circuit was built and tested for the

casc of a transversc microstrip transition. Duroid materials with permittivity
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2.2 and 10.2 werc the substrate and the superstrate respectively. The dimen-
sions of the device were chosen to be the same as thosce in Fig. 6-3 except that
stub lengths of about a half guide wavelength were used (0.75 cm and 0.81 cm
for the top and bottom microstrip respectively). The circuit was made using
a standard photo-etching technique and was measured on an HP-8510 net-
work analyzer. Both computed and measured results for VSWR are shown in
Fig. 6-7. The comparison shows good agreement. The ripple observed in the
mcasurement may be duc to an imperfect match at the coaxial-microstrip
transitions. One can observe that the VSWR is less than 1.8 from 7 to 11
GHz. Such a broadband transition would be very useful in circuit design.
This broadband property is mainly attributed to the double resonance due to
the presence of double stubs. In this investigation, 50  microstrip lines were
used. The impedance level will affect coupling in the transition. Therefore, the
results presented here may not be optimal. The choice of the impedance level

may depend upon the purpose of the circuit design.
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Chapter VII

Printed Slot Characteristics

7.1. Introduction

The printed slot antenna is a radiating element within the category of inte-
grated circuit antennas. The basic structure consists of a grounded substrate
with a slot etched in the ground planec. The geometry is shown in Fig. 7-1.
This printed slot structure has the features of producing bidircctional radiation
patterns and offering an additional degree of freedom when combined with
microstrip dipoles or patches [79] . The combination of printed slots and
dipoles also enables the realization of circularly polarized radiation patterns
[55]. In this chapter, some characteristics of printed slot antennas, such as
efficicncy. power distribution in each region. and the effects of materials are
studicd. In Scction I, Green’s function of an infinitesimally small magnctic
dipole in the ground planc is used to study the material effects on the radiated
power in cither side of the ground planc and the surface wave power in the
substrate. In Scction 111, substrate effects on the resonant length and the input
admittance of a center-fed printed slot are investigated through a method of

moments solution of a magnetic-type integral cquation.

7.2. Substrate Effects on Printed Slot Properties
The slot antenna gcometry undcr consideration is shown in Fig. 7-2. The
problem consists in its simplest forms of an X- dirccted infinitesimal magnetic

dipole skintight against the ground plane. The clectromagnetic fields of this
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Figure 7-2. A Hertzian magnetic dipole in the ground plane.
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Figure 7-1. A basic printed slot structure.
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geometry follow from the derivation of the Green function presented in Chap.
11 and can be described in term of a Sommerfeld-type [62] integral.

The radiating and surface waves of interest here are the electromagnetic
waves in the far zone, where radiating ficlds arce spherical waves with
R = p* + z* — oo, and where surface waves are cylindrical waves with
p — oo. The radiating ficlds can-be obtaincd by the mcthod of steepest descent
[80]: while the surface waves can be found by applying the i{csiduc and
Cauchy Ricmann theorems [80]. The final results for the far zone radiating

ficlds can be summarized as

2 .
E g sin ¢ cos k3 1 ___ e FaR (7.1)
= — jou s s 0k , .
0= —S% 0D (kysin0) R
. . e JkoR
Ey = — jopycos ¢ cos Ok M(k sin 6) s (7.2)

2'1,2 241 - nlz) sinh q\b

M(A = kysin0) = cos 0k, - , 7.3
= fosn® = e ® T T D 7
E
_ (]
Hy = 300 (7.4)
and
Ey
H¢ ~ T20m (7.3)

The radiating power above the substrate P, is
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fl’:JﬂlZ | Ey l2 + | E¢ |2

2 ..
S R’ sin 6 dddp. (7.6)

The ¢ integration is carricd out analytically while 8 is computed numerically.

It can be shown by reciprocity that each surface wave mode propagates in-

dependently [49]. The surface wave modes propagate along the diclectric

surface and dccay exponcentially toward free space. For the TM surface wave
modes (transverse to z), the total surface wave power Py, is the sum of the

surface wave power in region 0, (Pry,) and in region 1, (Pry,) where

n “#0 2n{) o k§
: Z Dy T
R
LA AT 2k hyf2) A ,[sinh(zq,b) ,,]
P. . =T creve—— l > - I- + - (7'8)
and
hd4) = q) coshqh + &,q sinhq;b. (7.9)

For the TE surface wave modcs, the total surfacc wave power Prg is the sum

of surface wave power in region 0, (Py), and in region 1, (Prg ), Where

nzw;to Z | 22(1 - n,z)sinh qb 124
D,{2) D’ (A) 7

Py = (7.10)

and
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o 2/.3k, (1 —ny) 12

Prpy = __ (7.11)
TF1 24 7 q, D,{A)D’ {2)

p  sinh(2g,b)
3- . 4(]1 )

The total surface wave power, P, is the sum of Pry, and Prz. The power in
the free-space side of the ground planc, P, can be obtained from the expression

in Eq. 7.3 as a special casc
K3
0 2

Py = —;(IIOn) . (7.12)

For printed slot antennas, it is important to know how the radiated powers
on cither side of the ground plane, and the power losses duc to surface waves
are affected by the substrate thickness, permittivity and;or permeability. The
radiation cfficicncy in the upper half of the ground plance (z = 0) is defined as

the ratio of radiated power to total power, i.c

Pa (7.13)
€ = —————— .
! P, + P,

The powers P, P, and P,,as a function of the substratc thickness with
£, = 4 and g, = 1 arc shown in Fig. 7-3, wherc cach power componcent has
been normalized to P,. It is scen that, as substrate thickness increases from
zcro, both P, and P,,, increcasc. The radiated power rcaches a maximum when
the first TE surface wave modc turns on. When the substrate thickness in-
creascs further, both P, and P, dccrcasc until the next surface wave mode
ncarly turns on. The local maximum of radiated power is due to the fact that

when a surface wave mode turns on, there is a considerable amount of power
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radiating along the horizon [53]. The oscillatory behavior of the surface wave
variation with substrate thickness can be explained in terms of ray optics
[57] and is mainly due to the constructive and destructive interference of
wavefronts when rays bounce back and forth inside the substrate. In Fig. 7-4,
the power distribution versus substrate thickness for ¢, = 12.5and g, = 1is
shown. By comparing Fig. 7-3 and Fig. 7-4, onc can scc that, for a larger
substrate permittivity, higher order surface wave modes turn on at smaller
substrate thickness. It is also obscrved that materials with larger permittivity
can support more surface wave power and allow more radiation. The results
show that cven though both radiated and surface wave power in the region
z > 0 incrcase with the increase of substrate permittivity, the increase of the
surface wave power is morc marked. The power distribution versus substrate
thickness for a magnetic material ¢ = 1 and g, = 4 is shown in Fig. 7-5. Tt
is obscrved that for a magnetic substrate P, is greater than P,. Gencrally
speaking, in printed slot structures, more power radiates in the substrate side
of the ground planc (P,) than that in the free spacc side (P,), when the
substrate is a diclectric; while the reverse is true for a magnetic material. It
is also observed that the surfacc wave power for magnetic materials, in con-
trast to diclectric materials, increases even after the first TE surface wave
modc turns on. The radiation cfficicncy versus substrate thickness is shown in
Fig. 7-6. For a magnctic matcrial, with a small substrate thickness, surface
wave power incrcases and radiated p(;wcr decreases with the increase of
substrate thickness. Thercfore, it is seen from Fig. 7-6 that efficiency decreases

drastically versus substrate-thickness for a thin substrate of magnetic material.
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For g, = 4.¢ = 1, less than 20% efficiency is observed when the substrate

thickness is-only 0.1 4, .

7.3. A Center-fed Printed Slot

A printed slot, center-fed by an ideal d-gap source, is considered in this
scction. The geometry is shown in Fig. 7-7. A method of moments solution
of integral equation is used here to study the characteristics of a slender rec-
tangular slot. The procedure described in Chap. V for the slot can be used to

obtain the following linear simultancous cquations:
(Yol = 1. (7.14)

where . 15, - ..., ¥y are the amplitudes of the expansion functions. Sup-

posc that an odd N is used, then for a center-fed slot,
Ivepz = -1 (7.15)

and I, = 0 for k # (N + 1)/2. The matrix clements Y,,, can be formulated as

y _ o ffoo 5 ’() p! )JZ L 2) Km—n)/'._‘d ) ) 7.16
= Ay A) JA0[2) Af(A,) @ dAy dA,, (7.16)
—0 =00
where
2 2 2 2 2
= 2 | kA ql —e My kj-4Ay
G (A1) = == Xr(2) + x|, 717
it 2y) rm[ N R WAV Y B (7.17)
S ) = cosh b + e,-‘%-sinh ab. (7.18)
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and 4,(2,) is the Fourier transform of the PWS expansion mode. The method
of computing Eq. 7.16 has been discusscd in the previous chapters. The input
admittance is defined as

Yin - Gj +ij= —17-'—'_'.
(N+1)2

- (7.19)

Bascd on the above analysis, the input admittance of a center-fed slot is
examined as a function of various structure paramcters. In Fig. 7-8, the input
admittancc versus slot length is shown with two different material
permittivitics. It is observed from Fig. 7-8 that when the permittivity in-
creases. the slot resonant length decreases and resonant resistance increases.

The center-fed slot bandwidth (BW) can be defined [46] as

g = L 25 (7.20)
Lr .f.@.)
dL L,

It is found from Fig. 7-8 that with b = 0.024, and w = 0.014, , when ¢, in-
creases from 2.2 to 5.0, the bandwidth (BW) decreases from 21.5% to 13.2%.
The input admittance versus slot length with two different substraic thickness
is shown in Fig. 7-9. It is obscrved that increase of the substrate thickness
decreascs the resonant length, the resonant resistance and the bandwidth. The
cffect of slot width on the input admittance is shown in Fig. 7-10. It is found
that the increasc of slot width causes the slot resonant length and resonant re-

sistance to decrease and the bandwidth to increase.
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Chapter VIII

Printed Antenna Feeding Structures

8.1. Introduction

The design of feeding structures is one of the most important parts in the
dcsigh of printed circuit antennas. Since the geometry of printed circuit an-
tennas involves grounded substrates, the design of feeding networ-ks usually
requires integrated circuit technology. For monolithic phased array applica-
tions, the transition from feeding networks to radiating clements is the key to
the success of the design. Classical feeds of printed circuit antennas contain
cither a microstrip transmission linc in physical contact with the radiating ele-
ments or a coaxial line penetrating through the ground planc [81],[28]. In
the former casc, feed and antenna together form a resonator.  Due to the high
Q of this type of resonator, the bandwidth is very narrow. Undesired spurious
radiation at the microstrip-antenna junction may also be a scrious problem.
The probe fed microstrip antenna is not suitable for millimeter wave or
monolithic applications mainly due to the presence of the probe.

To overcome the disadvantages of classical feeds, a new feed-antenna ar-
rangement  using  clectromagnetic coupling (EMC) has been  proposed
[81],[56]. In this type of structure, there is no physical connection between
feed lines and radiating clements.  The microstrip line can be very close to:the
ground planc to reduce spurious radiation and the antenna is away for the
ground planc to incrcasc the bandwidth. GaAs substrate (¢, = 12.8) is very

suitable for active devices, but its diclectric constant is too high for radiating
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clements when efficiency and bandwidth are considered. EMC antenna

. structures arc exccllent for these monolithic phased array applications, where

active devices can be printed on a GaAs substrate and antennas on a low
permittivity superstrate. The architectures using EMC antennas in layered
configurations scem to be the ultimate choice for monolithic phased arrays.
The EMC collincar dipole has been extensively studicd in the past few years
[59].[601,[421,[43] . In this chapter, four EMC antenna feeding struc-
tures arc discussed. Thesc include a microstrip fed slot, a slotline fed dipole,
an EMC transverse dipole and a microstrip fed slot coupled dipole. These
structurcs have the common feature that a string of the antenna clement above
a common feed line becomes a lincar array. The analyses discussed in Chaps.
V and VI may also be used to study the printed circuit antenna structurcs.
The features of the four feeding structures together with numerical results will

be discussed in Scctions 8.2-8.5.

8.2. A Microstrip Fed Slot

The radiation characteristics of a printed slot antenna were discussed in the
last chapter.  The features of the slot antenna as compared to the strip dipolcs
arc that it is broadband and gives bidircctional radiation. A simple way to
design its feeding structure is to use a microstrip line electromagnetically cou-
pled to the transverse slot, as shown in Fig. 8-1. The analysis of this structure
has been reported using an equivalent circuit model [82] , a waveguide model
[83], and via reciprocity [84]. However up to now there arc no rigorous re-

sults available. In this scction, a rigorous result based on solving an exact
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integral equation by the method of moments is presented. The equivalent
circuit of a slender rectangular slot perpendicular to the microstrip is a series
element. In order to understand the property of the slot, the equivalent circuit
as a function of various device parameters should be investigated. The nor-
maliz:d equivalent resistance and reactance as a function of slot length are
shown in Figs. 8-2 and 8-3 respectively, for two diffecrent substrate diclectric
constants. It is observed that for a fixed substrate thickness, the resonant
length decrcases and maximum coupling (resonant resistance) increases with
the increase of the substrate permittivity.  These phenomena are due to the
fact that the increasc of substrate permittivity will decrease the effective
substrate thickness (cffective distance between microstrip and slot) and de-
creasc the effective length of the structure; as a result, the resonant length de-
creases and maximum coupling increases. It is also scen that for smaller
substratc permittivity, the cquivalent circuit is less sensitive to the change of
the structure parameters.

Fig. 8-4 shows the Smith chart plot of the cquivalent impedance of the slot
as a function of offsct (8) for three different slot lengths.  The offset § is de-
fincd as the distance between the center of the slot and the center of the
microstrip linc. It is observed that the coupling between the slot and the
microstrip linc decreases monotonically as offset increases. It is interesting to
sce that, for small offsct, the impedance is insensitive to the offset change.
This implics that the alignment between the slot and the microstrip line is less
critical than for EMC dipoles [60], where the offsct control is very important

to the accuracy of a design.
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Figure 8-1. A microstrip fed slot.
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The input impedance of a stub-tuned slot obtained from information above
the reflection cocfficient in the microstrip line is shown in Fig. 8-5 as a func-
tion of frequency. It is scen that the bandwidth is mainly determined by the
tuning stub since the resistance is quite insensitive to the frequency. There-
fore, to increase the bandwidth, the stub length should be chosen such that at
the resonant frequency the change of stub impedance with frequency is as
small as possible. Another way to increase bandwidth is to control the device
paramecters such that resonance occurs even without the tuning stub. Fig. 8-5
shows a typical example for this design where the bandwidth is 6% with a stub

length =~ 0.024,. The bandwidth will also increase if the slot width is enlarged.

8.3. A Slot Linc Fed Dipole

A ncw feeding structure for printed dipole antennas is shown in Fig. 8-6,
where a slot linc is ctched in the ground plane, and cxcites a printed dipole
through proximity coupling. In order that the slot line be an effective
waveguiding structure, the suhstrate permittivity should be large (>10) to
confinc energy along the slot.  The equivalent circuit of the dipole seen by the
slot lin¢ is a shunt clement.  An example of this result as a function of dipole
length with GaAs substrate (¢, = 12.8) is shown in Fig. 8-7. It is observed
that the admittance changes more quickly with antcnna length than for printed
slots. The cquivalent admittance of a dipole as a function of frequecy is shown
in Fig. 8-8 for a substrate with ¢, = 12. It is observed that the admittance
changes drastically for a small change of frequency. This antenna structure is

inherently narrow band. Another problem is that the cfficicncy of the antenna
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Figure 8-6. A slot line fed printed dipole.
Dipole length: L.
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Figure 8-7. Normalized admittance of a slol line fed dipole
versus dipole length. €, = 12.8, & = 0.024, w, = 0.01Ag and w, = A,
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is small for a large substrate permittivity. To overcome these disadvantages,
dipoles can be printed in a low permittivity substrate and at the same time a
high permittivity substrate can be used on the other side of the ground plane
to confinc energy ncar the slot line. This type of slot line sandwich structure
has been discussed in Chap. 1V. Another advantage of this structure is that,
for monolithic applications, active devices can be made on a GaAs substrate
and isolated from the antenna elements by a ground plane. This type of ar-
chitecture can reduce spurious radiation due to active devices. An example of
the results of the equivalent admittance of a dipole in a two-side slot line
structure is shown in Fig. 8-9. The results are for thc case when the dipole is
printed on the substrate with ¢, = 2.54, while the other substrate is &, = 12.
From the results in Figs. $-8 and 8-9, it is secn that bandwidth is indeed im-
proved by using a slotlinc sandwich. It should also be mentioned that the ra-
diation and surfacc wave losscs duc to the feedline may also be reduced by

using a slot linc sandwich.

8.4. An EMC Transverse Dipole

A dipole that is clectromagnetically coupled to microstrip, but oriented
transverse to the microstrip, as shown in Fig. 8-10, is one of the printed an-
tenna feeding structurcs proposed by Oltman [56]. One of the features of this
EMC transverse dipole is the light coupling between the dipole and the
microstrip linc. Thercfore, it is fairly well suited for radiating element in large
antenna array. A thcoreiical and experimental investigation of this EMC

transverse dipole has been reported in [77].
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Figure 8-10. The electromagnetically coupled transverse dipole.
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In the next chapter, array designs of this antenna architecture will be dis-
cussed. In order to check the analysis of this work, the result of the present
analysis is compared against the experimental results presented in [77]. The
comparison is shown in Fig. 8-11. It is found that thc agreement is quite

satisfactory.

8.5. A Microstrip Fed Slot Coupled Dipole

A common problem for the antenna architectures discussed in the last few
scctions is that the feed line and radiating clements are on the same side of the
ground plane, and spurious radiation duc to the transmission linc can not be
climinated completely.  In millimeter wave applications, feed line radiation
may causc scvere cross polarization. A nice way to alleviate this difficulty is
to usc a two-sided structure, as shown in Fig. 8-12, where any radiation due
to the feeding network and active devices is isolated from the antenna by a
ground planc [85],[86]. The dipolc is actually fed by a secondary source,
namely a slot in the ground plane. This type of aperture-coupled antenna
architecture scems to be a promising candidate in millimeter wave monolithic
phascd array applications. Since thc combination of a slot and a dipole pro-
vides sufficient degrees of freedom, the dipole is centered to the slot and the
slot is centered to the microstrip line.  Also, since the main radiation comes
from the dipole, the slot length can be choscn far below its resonant length.
The cquivalent circuit of a slot coupled dipole seen by the microstrip line is a
scrics clement.  An example of this cquivalent circuit as a function of dipole

length for two diffcrent slot lengths is shown in Fig. 8-13. It is observed that
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the increase of slot length will decrease the dipole length to obtain resonance.
This is because when the dipole length decreases, resonance will be due to the
resonance of the slot, whereas when the slot length decreases, the resonance
will be duc to the resonance of a center-fed dipole. It is also observed that the

resonant resistance is larger for larger slot length.
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Figure 8-12. A microstrip fed slot coupled dipole.
Microstrip line width: w m siot length : Ls.
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Chapter 1X

Design of Transversely Fed EMC Microstrip Dipole Arrays
Including Mutual Coupling

9.1 Introduction

Oltman introduced a class of eclectromagneticaly coupled (EMC) dipole an-
tennas [81],[56]. The advantages of EMC dipoles arc greater bandwidth,
higher efficicncy and more casily matched to the feed lines, when compared to
classically fed printed antennas. Based on the transmission line circuit model,
Oltman and Huebner [56] built a longitudinal EMC dipole array. Later,
Elliott and Stern developed a rigorous design theory to include the effects of
mutual coupling which successfully predicted the array performance
[59],[60]. An cfficicnt way to obtain the design curves was reported later
[42], [87] based on solving a Pocklington type integral equation using the
mcthod of moments. The EMC collincar dipolc is idcally suited to a corporate
feed, and clements of this type can be arranged in circular as well as rectan-
gular grids.

Another dipole antenna of the Oltman type is the EMC transverse dipole,
as shown in Fig. 9-1, where a dipole is oricnted transverse to an embedded
microstrip linc. A string of these dipoles above a common microstrip line be-
comes a lincar array. Depending on dipole spacing, one can obtain standing
wavc arrays or traveling wave arrays. A family of these linear arrays becomes

a planar array. Current excitation on the dipole is governed by the amount
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Figure 9-1. The electromagnetically coupled transverse dipole.
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of offset and the dipole length. If the dipole straddlés symmetrically, no
excitation of the dipole occurs. Light coupling from linc to dipole can be
achicved through a slight lateral displacement of the dipole from its balance
position. Because of this light coupling, large arrays are feasible [88].

Both theoretical and experimental studies of the EMC transverse dipole are
reported recently [77]. In this chapter, a design technique which includes
mutual coupling is developed for the EMC transverse dipole arrays. Two de-
sign cquations will be introduced in Section 9.2. The methods for gencrating
design curves will be discussed in Section 9.3. A design example will be given
in Scction 9.4 together with the experimental results. A numerical verification
of the design by solving the boundary value problem of the whole array system

will also be provided.

9.2. Two Design Equations.

For the transverse EMC dipole undcer consideration, it can be shown from
image theory that the scattering off the dipole is symmetric. In other words,
the forward and backward scattering cocfficicnts arc the same. Thercfore, in
terms of the transmission linc cquivalent circuit, the dipolc can be approxi-
matcd as a shunt clement with respect to the feed [61]. Each dipole in the
array environment can then be modelled as a two port network and the whole

system is a lincar bilateral network [59] . Therefore, one can write

N
AR A 9.1)
m=] .
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as a sct of equations connecting the transmission line mode voltages and cur-
rents at cach reference port [61]. The active admittance of each dipole seen

by the feed line can be dcfined from Eq. 9.1 by

Y? = i
", (9.2)
. b
= )nn + )n
where
.’\" "’
I o (9.3)
m=1 h

with the prime on ) indicating the term n=m is excluded. Y,, is the self-
admittance and Y is referred to as the mutual admittance due to the mutual
coupling between cach dipole. Since a lincar system is assumed, the current in

cach dipole can be written as

N

d
"’*a = ﬁ"- + '-—-"j'" 9.4)
I n Ln m=1 I n

where /,, is the current of the nth dipole for a given mode voltage without the
presence of other dipoles and /,, is the current of the nth dipole due to the
current in the mth dipole. The isolated dipole current /,, is a function of mode

voltage, dipole length and offsct which can further be written as

Inn Yn
= 9.5
Vy Sdsw b)) ®:3)
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where f,(s,. ;) is a coefficient function relating the isolated dipole current to its

scif-admittance.

The two design cquations can be summarized from the above derivations

by
ey AR
i S Y (9.6)
ln fn m=1 "n
and
\.’
5 g
Yo = Yan+ ) . 9.7)
n

m=1

It is noted that, for the EMC tranverse dipole, the current phasc variation in
an isolated dipole is quite large, typically 5 to 10 degrees; while, in contrast, the
current duc to mutual coupling has a small phase variation. Thercfore, in the
design, the cocfficient function is not suitable for relating mutual current (7,,,)
and mutual admittance (¥,,). Onc can usc the mutual current term (/,,,) di-
rectly in Eq. 9.6.

The fundamental design problem is now obvious. For a given design goal
(radiating current in cach dipole /74 one wishes to find N set of (s,, /,) such
that not only Eq. 9.6 is satisficd but also the active admittance scen by each
feed line is what was prescribed. The definition of the radiating current in
cach dipolc may depend on the design goal. For example, if onc wishes to de-

sign a specific pattern in the H plane (perpendicular to the dipole), the /4
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should be defined as the current collapsed in the feed line [61]. In other

words,

rad b

I, =I L{y)dv. (9.8)
0

In the two design cquations in Egs. 9.6 and 9.7, Yo fos Innl ¥V and Y,,, can be
determined by the method of moments. This issue will be discussed in the next
scction.

Suppose that all four functions are known. Further computations are still
required to find the dipole lengths and offscts. Since only relative currents in
the dipolcs arc meaningful, onc can arbitrarily choose a dipole, say the nth,
with length /, and offsct s,. For thc moment, assumc that no mutual coupling
exists such that the left hand side of Eq. 9.6 can be determined according to
the design goal (desired currents in the dipoles). One now can use the first
design cquation (Eq. 9.6) to find N-1 dipolc lengths and offscts. This proce-
dure requires that a two-variable nonlincar cquation be solved N-1 times. To
avoid the stability and solvability problem of this nonlincar equation, the
conjugate gradicnt mcthod [89] can be used to provide optimized solutions.
Even if the above procedures arc completed, a few iterations by changing the
dipolc length or offset of the first sclected dipole are required to provide the
prescribed input impedance. Now the design data is what one should obtain
if no mutual coupling cxists. To includc the cffcct of mutual coupling, one can
use the present design data to compute the mutual admittance and mutual

currents and go back to the two design cquations repecating the above iter-
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ations. The whole procedure is itcrated until the convergence of the design

data is found.

9.3. Discussion of the Method of Moments Solution

In order to make an accurate design possible, information about the inter-
action between dipoles as well as dipole coupling to the feed line is required.
The method of moments provides a rigorous and accurate solution. Integral

cquations for the EMC transverse dipole can be written as

Efx,y) = I j SV vy de d + ” I, yydx' dy (9.9)

and

Efxy) = ” SV ae dy + ” SIP, yyax dy (9.10)

where Jg”(x ,)') is the current in the microstrip linc and J@Xx’, y") is the cur-
r;:nt in the dinole. The functions G,,, G,,, G, and G,, arc the dyadic Green’s
function components. A nice way of modcling the feed line is to use a finite
but long microstrip linc with a d-gap gencrator placed far from the linc-dipole
coupling region [42], [43]. When the combination of piccewise sinusoidal
and Maxwell current basis functions is used in the mcthod of moments

[42], [43] followed by the Galerkin procedure, the matrix equations

[Zmn] [ln] = [En] 9.11)
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can be obtained. The excitation column vector E has components £, = —1
when the & gap source is located at the center of the kth basis function, and

E, = 0 anywhere clse. The impedance matrix elements are in the form of

nf2

_ P2 52 2 7
Z,, = L jo [(k2 = 22 3 + A2 A T 4,)
JofA s Ay) cos(A,Ax) cos(A Ay)didp

9.12)

when the mth and the nth basis functions are both on the dipole or on the line,

and

nf2 poo _
Z,, = L fo I dy LA = W] T )
Tolhss Ay) Sin(L,AY) sin(1,AyMiAds ,

(9.13)

otherwise. The functions J,(4,,4,) and J,(4,,4,) arc the Fouricr transforms
of the expansion and testing functions respectively. (Ax, Ay) is the displace-

ment vector of two basis function centers,

ly = AcCOS ¢ (9.14)
and
/‘.y = Asin ¢. 9.15)

The function f4) and A(A) arc related to the Hertz potential described in Chap.
II. The unknown currents in the feed line or the dipole can be obtained by
matrix inversion. As a result, onc can usc the unimode transmission linc the-
ory to deduce the circuit information from the mcthod of moments solution of

the current in the feed line. This procedure involves finding the current maxi-
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mum. minimum and their positions. Detailed procedures of this are shown in
[42]. It is noted that in order to find the dipole equivalent admittance, the
dipole can be placed a half electrical wave length fram the line end such that
the stub admittance will not be included in the input admittance observed by
the feed line.

Onc of the features of using é gap source is that the mode voltage of the line
changes with the change of the dipole length or offset; therefore care must be
taken to find this mode voltage, since as shown in Eq. 9.6, dipole current is
proportional to the mode voltage and only their ratio is useful in the design.

Another feature of using thc moment method in the array design is that the
information about the currents in the dipoles can be obtained from the nu-
merical process.  This aspect is particularly helpful, since onc can usc the
dipole current directly to design for the desired excitation instead of using the
cquivalent circuit of the dipoles. This will be discussed further in the next
scction.  Other issues in this array design are how the mutual coupling infor-
mation can be scparated from that of the sclf term and how this can be
achicved without involving the whole system at the samc time. In order to
solve these problems, certain assumptions are nccessary. It is assumed that
the self admittance and sclf current to mode voltage ratio will not change with
or without the presence of other diooles, and that the mutual coupling between
any two dipoles is unaffected by the rest. These two assumptions are good if
mutual coupling is not too strong [61], which is usually true for practical ar-

rays.
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The method of computing mutual coupling of dipoles individually fed by a
microstrip linc has been discussed in [87]. One of the features of the array
considered here is that the dipoles are scrics fed by transverse microstrip lines.
The computation of mutual couplir{g in this casc requires a different approach
from [87]. To find the mutual coupling information, one can consider two
dipoles fed by a microstrip line and follow a similar numecrical method as for
an isolated dipole casc except for the additional computation of dipole to
dipole rcaction. An asymptotic extraction techniquc together with point
source approximation has been developed in [44] to compute cfficiently and
accuratcely the rcaction of two dipoles. After the matrix inversion, thc' solution
of the current in the linc or dipoles provide the total active admittance as well
as active currents of the dipoles. For the nth and mth dipole with rcsonant
spacing. the mcthod of moments allows onc to computc the total active
admittance

Vo= Yod T 9.16)
)”n + ,"1'" + 2’"3"

The - or + signs depend on whether the dipole spacing is an odd or even in-
teger of a half guide wavelength, From Eq. 9.16, if the self admittance of each
dipole is known, the mutual admittance can be determined. The active cur-

rents in the dipole /2 and /2 can also be obtained numerically and can be dc-

scribed as

I / /

=+ (9.17)
"n lll! Vn




and

- I | !
:n = Jmm f’rm ! 9.18)
Von Von Vin
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From Eqs. 9.17 and 9.18 together with the information of the current excited

in an isolated dipole, the mutual current (/,,,) can be obtained.

9.4. A Design Example
The previous discussion of the design theory applics cit.hcr to a lincar or a
planar array. Here, a seven clements standing wave linear array will be de-
signed to illustrate the design technique. The gecometry is shown in Fig. 9-2.
A sum pattern in the H -plane with a -20 dB sidc lobe level was prescribed for
this array. The printed dipoles are scrics fed by a 30 Q microstrip linc em-
bedded in the middle of the substrate of thickness 0.16 mm and permittivity
2.17. The design frequency is 8.3 GHz and clement spacing is chosen to be one
guide wavelength. All dipoles have the same width of 1 mm and the offsets
and lengths are to be found. The design curves for the self admittance Y,, and
the cocfficient function £, as a function of offsct and length obtained from the
mecthod of moments solution are shown in Figs. 9-3 and 9-4 respectively. It is
found that, for the EMC transverse dipole, many basis functions are required
to obtain adequate convergence. To obtain each data point, 19 expansion
modes arc used in the dipole and piecewise sinusoidal modes of size of 0.04
R guide wavelength arc used in the line. It is observed from Fig. 9-4 that for

different dipole offsets and lengths, the phase of f,, is not a constant.




input source —Dl kg ——

Figure 9-2. A seven element linear standing wave array.

Elements are spaced by a guide wave length.
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This implies that even for resonant spacing, to have in-phase excitation, the
dipole can not be sclf rcsonant. To obtain a perfect match, the stub length
Ax in Fig. 9-2 can be suitably adjusted to tune out the total active susceptance.

The sampled data are used to construct the data bank such that for a given
offset and length the function value can be obtained through a two dimen-
sional interpolation routine. Mutual coupling between two dipoles i3 a func-
tion of dipole lengths and offsets for a fixed spacing. It is found that mutual
coupling is not sensitive to a small change of dipole length. Also from the
results of no mutual coupling, it is found that the lengths of all the dipoles are
differcnt within 0.2%. Thercfore, in the mutual coupling computation, the
dipole Icngths are fixed. The mutual admittance and mutual current as a
function of offscts for one guide wavelength spacing and fixed dipole length
arc shown in Figs. 9-5 and 9-6 respectively. A similar procedure can be fol-
lowed for a two wavcelength spacing, and so on.  As a{ result, the intcrpolation
or extrapolation method can provide the mutual coupling information for any
dipolc spacing.

The design data after a few iterations, including the sclf and mutual
admittances are shown in Table I. The clement spacing is 23.6 mm and
Ax = 11 mm. Itis scen that the mutual admittance is more than 25% of the
total active admittance. Thercfore, it is concluded that even at one wave
length spacing, the cffect of mutual coupling should not be ignored. To pro-
vide a confident check of the design data, the method of moments is applied
to the scven clement lincar array. The results of active admittance and cur-

rent in cach dipole are shown in Table 11 together with the results from the
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synthesis technique. It is observed that the current amplitude agrees within 1
to 2% and the phasc agrees in + 1 degree.  The admittance comparison is also
good.

The antenna array was built on a 10-in square Duroid board [90]. The
measured return loss from the feed line is shown in Fig. 9-7. The bandwidth
of this array is about 3.75%. The frequency for a perfect match is found to
be 8.14 GHz which deviates 160 MHz (2%) from the design frequency. This
result is rather good, considering that this array is very sensitive to the toler-
ances of the device parameters. Both the desired and measured radiation
patterns in H-planc arc shown in Fig. 9-8. It is obscrved that the main beam
as well as the first sidc lobe agree well with the design criteria. Other side
lobes in the measured pattern arc a little too high, which is probably due to the

finite size of the ground planc.
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TABLE |

Design data of a seven clement lincar array ]

No. —nl fset in m-;n—' dipole length in mm | v, Nyl n
Pl 0.5697 12.723 0.0580 + j 0.0934 | 0.015 + j 0.003
2 0.7425 12.743 0.0825 + j 0.0519 { 0.038 + j 0.006
3 0.9467 12.716 0.1450 + j 0.0020 | 0.053 + j 0.006
4 1.0200 12.703 0.1769 - j 0.0235 | 0.060 + j 0.005
5 0.9467 12.716 0.1450 + j 0.0020 | 0.053 + j 0.006
6 0.7425 12,743 0.0825 + j 0.0519 1 0.038 + j 0.006
7 0.5697 12,723 0.0580 + § 0.0934 1 0.015 + j 0.003

¥iu = 102 4 jO.002 (1esult from iterations)

¥,, = 1.08 + j0.006 (result from LE.S.)

TABLE 1l

Design check through an ntegral equation solution (1.C.S.)

No. desired current L.E.S. current
! 1.0000 < 0.0 1.0000 < 0.0
x| 1asi<00 126 <-1.2
A 1.6810 < 0.0 1.650 <-0.2
4 1.8A51 < 0,0 1824 < 1.4
S 1.6810 < 0.0 1.654 < 04
6 R YPTT: 1.266 < -08
7 T PT 0,99 < 0.8

The wint ol the plune of cunent is in degree
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Chapter X

Conclusion

In this dissertation, a generalized frequency dependent method has been de-
veloped to characterize integrated circuit discontinuities and printed circuit
antennas. The analysis has taken into account all the physical effects includ-
ing radiation, surface waves and higher order modes. The mcthod of moments
has been used to solve coupled integral equations. In the procedure, a mode
expansion mechanism using the combination of the entirec domain traveling
wave modes and the piccewise sinusoidal subdomain modes has been devel-
oped. This scheme is particularly useful for the analysis of coupled infinite
lincs.

The geometrics of microstrip-open-cnd and gap discontinuitics in two layer
structurcs arc apalyzed. The fringing effect and radiation and surface wave
losses as a function of various device parameters are studicd. The results of
this study have been obtained through a carcful convergence test and com-
parcd against the quasi-static results in low frequency range with excellent
agreement. A short-end slot line discontinuity in a one-side or a sandwiched
structure is also studicd. The advantages of using a slot line sandwich have
been demonstrated.

Linc to linc transitions which arc increasingly important in VLSI and
monolithic circuits, have been investigated.  The transition circuits studied

include microstrip-slot linc transition, proximity coupled collincar and trans-
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verse microstrip transitions.  The analysis of microstrip-siot line transition
which includes the coupling between microstrip and slot line, reveals the ver-
satility of the developed numerical methods. The analysis can be easily im-
plementcd in a computer aided design o‘f both microstrip circuits and slot line
circuits. The analysis of proximity coupled microstrip transition has shown
that these transitions are broadband and provide a wide range of coupling co-
efficicnts, and have potential importance in the design of microwave filters and
couplers.  The experiment for the case of a transverse transition has been
performed to verify the analysis.

The method for characterizing integrated circuit discontinuitics is general
cnough,to analyzc a class of printed circuit antenna feeding structures. These
structures include a microstrip fed slot, a slot line fed dipole, an EMC trans-
verse dipole and a microstrip fed slot coupled dipole. The main features and
potential applications for cach antenna architecture in monolithic phase arrays
have been discussed.

Design techniques and procedures for microstrip dipole arrays transversely
fed by proximity coupled microstrip lincs have been presented. Two design
cquations which include the cffects of mutual coupling arc developed and the
corresponding design curves arc obtained by a rigorous intcgral cquation sol-
ution. A scven cicment standing wave linear array has been designed to illus-
tratc the developed design procedurcs. The design data is checked by a
complcte integral cquation solution of the array with excellent agreement.  The
radiation pattern and input impedance measurements are also compared with

theory.




¢

The integrated circuit components studied in this dissertation are either
isolated line discontinuitics or proximity coupled transition from linc to linc.
The circuit components are slender strips or slots in rectangular shape. These
considcrations lead to the approximation of a onc current component in the
strip and a one elcctric field component in the slot.  This simplified analysis
has greatly reduced the CPU time without losing desired accuracy. With a
straightforward (but tedious) modification of the present analysis which con-
siders both current or ficld components in the circuit, one is able to character-
ize microstrip and slot junction discontinuitics. The extension of the present
rescarch to coplanar waveguide or coplanar coupled line is also possible. The
analysis of the printed antenna elements can be used directly to design
monolithic antenna arrays without considering mutual coupling. The method
of incorporating mutual coupling in the array designs has also been demon-

strated with an EMC transverse dipole array as an example.
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Appendix A

The pertinent parameters in Egs. 2.9-2.14 are expressed as

2

g2 cosh gx(z; — b) N g sinh gz, — b)

W(A) = A
Jod) = ny[ 1 iy tanh .5 (4.1)
(1 - ng) . ni" 2 2 .
II()().) = [Tﬁ)(/)'ll(}) + “—.’q‘z(llz - nl)Az(A)] (AZ)
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Si4) = —;——"'-_[q sinhgs(h — z) + 27 Z‘ sy (A.3)
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for z; < 2z < A, fy(2) is similar to Equation (A.5) cxcept z and z, are inter-

changed due to the reciprocity.
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Ag(4) = qanjcosh gz — b) + Ty sinh gz — b)tanh q;b

(A.10)

(A.11)

(A.12)

(4.13)

(4.14)




Appendix B

The pertinent parameters in Egs. 2.28-2.33 are expressed as

. A) _ Sinh (Ilzs Bl
SR = gy (BN
, S oA)
Wy = ;}ﬁ (1 — nIniB((A) + (nF — nd) BAA)] (B.2)
forz; <2< b
oo Hasinh q,z, sinh q,z,sinh q(b — 2)
SA) = —-——83(/)9mh q,z + , D A) (B.3)
pysinh qlb q,sinh q)b
for0 < z < z,/"/(4) is similar to Eq. (B 3) except z and z; are interchanged
due to the reciprocity.
e+ f () seciiq i3
W) = 2/ ¢4 q,ll {(n - rh)B,(/)B_;()) + qznl(l -—m)] (B.4)
81(]2"2
. "4 qycosh gh — 2z
£aiy = L8N o g - 2y 4 2SR~ D), (B.5)
K2
A /4
VoA) = —{(nf — n})BAN)BSA) + il — nByA)] (B.6)
n3qs
- e .
B\(A) = qycosh qxfh — b) + ;f-q, tanh g,b sinh gx(h — b) (B.7)

BA4) = pxqsinhgfh — b) + qycosh g{h — b) (B.8)




B(2) = qsinh gh — b) + -g—i-cosh akh ~ b) (B.9)

A

B{(A) = gycosh g — b) + geysinh gh — b) (B:10)

4 By2) = gycosh gt — z) + geysinh go(h — 2) (B.11)
£

B(?) = qycosh gz — b) + %ql tanh q,b sinh gz — b) (B.12)
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Appendix C

The pertinent parameters in Equations (2.85)-(2.90) arc expressed as

22
mnynyqs
), = e— C.
Jmil?) H>cosh q,b (€.
hy(£) = qasinhgfh — b)Cy(A) + qg cosh gh — b)CHA) (C.2)
) -4z
Sui?) = SZm— 4 (1 = tanh gbXCx(2) + C42)) (C.3)
2.2 2
) q gani(l — n3)
ho(4) = [ ! .
(%) sinh ;b cosh ;b - M + GAC] (€4)
, ()
) = Lt .9 (€3)
. #) , 2, 2D
hyA2) = 72 cosh 475 Cy(2)Ce(A) + nj(1 nz)-ﬁ?Cg(,l) (C.6)
q nz(l nz) U qnz( : ”2)
P\ — | gty —
C\(4) = — (C.7)
sinh q,b #% cosh q,b
2 2
_y ny(1 = ny)
C4h) = My cosh q\h (C3)
\ ) '112(]72 .
Cy4) = sinh goh = b)(ue5g — ql‘) (C9)




2
nieaq-q

Cy4) = cosh gh — b)(1 €295 — a

(3%

. q> cosh gs(h — b)
Cs4) =

] i + gsinh g5(h — b)
v

CeA) = (13 — n)lascosh gk — b) + geysinh golh — b)]

q>cosh g(h — z) + sinh gxh — 2)

A7) = 2 i
29
. q>cosh gy(h — z) )
Cyr) = = + gsinh gx(h — 2)
sinhg+(z — b cosh gXz — b
iy = 7 ) 4+ H1_gzcosh gy )

sinh ¢b 12 cosh ¢,h

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)




Appendix D

The asymptotic extraction technique discussed in Section 11T of Chap. lll,"‘

requires the computation of the following integral

w/2 rw/2 rd, d,
= L)
-/ eff J—wj2 —wj27—d, - (D.1)
[(——+A‘) ]dxa’x dvdy
6\’
where
) sinkel(dl - l.\'l) )

Jolx) = —2o kd, (D-2)
R = N(x—x" +ndj—md)} + ¢ —y')?, (D.3)
kt’ = \”EJ/T' (D4)

and J(v)is shown in Eq. (3.5). The quadruple intcgral in Eq. D.I can be fur-
ther reduced to a double integral with integrand containing the Fresnel func-
tions if k, = k,, . Sincc the integration range is usually small, the integration

converges quite casily,
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Appendix E

The dominant term of the asymptotic form of Eq. 3.30 is

E = -Ol‘mkc J"l" oo Fl(A.P)

cos A cos k,dy)cos A.ndy dA dp (E.1)
/m"eff y l" ( rdl e“l x14)

E when transformed back to Fouricr domain can be expressed as

E= 05 El(dl + Il('[l) + 0.5 El(dl - ndl) — COoS kedl El(lldl)

+ 0.5 Exd, + nd)) + 0.5 Exdy—ndy) — cos k 4y Exnd)) (£2)
where
E\(2) f”ﬁ() yar, | cos A 0 (E3)

ldf—‘ l')"'}‘ UA .
! GRS NGRS
o Cos-A,x
Esa) = I Fi,) da, f e i, (E4)
/.x ~ kp)\JAx + A .

and
by= A% = 2 (E.5)

The intcgrations in Egs. E.3 and E.4 both converge. however, in order to ob-
tain morc accurate and cfficient computation, further analysis may be re-
quired. For the 4, intcgration in Eq. E.3, the intcgration contour in a complex
planc can be deformed (referring to Fig. E-1) along the branch cut. This will

help the integration decay exponentially when the cos argument is not zero.




“a

Using the branch cut integration and a sccant transformation. Ey(2) can be

written as

Ey«) = jw Fi) j et <58 (ES6)
A A2 T+ A cos“0

The convergence of the 2, integration in Eq. E.4 can be improved for « # 0 by

deforming the intcgration contour in the complex plane. The new contour is

shown in Fig. E-2, The final form of the integration in Eq. E.4 can bc written

as

) ‘2 2
Eja):&j Fid) diy joN 4 =
0

2
-

Ioo e~ dy (E.7)

O (- k) \JA2 + A

where

My = \JA* = &+ ju (E8)

It should be noted that the singularitics in cither Eq. E.l or E.2 arc ignored

since, as pointed out in Chap. 111, these singularitics are removable.
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branch cut

Figure E-1. Integration contour of Eq. E.3.
branch point at jxy

A_ plane
branch cut * X

N

Figure E-2. Integration contour of Eq. E.4.
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A RIGOROUS DISPERSIVE CHARACTERIZATION OF MICROSTRIP CROSS

AND TEE JUNCTIONS t

Shik-Chang Wu, Hung-Yu Yang and Nicolaos G. Alexopoulos

Electrical Engineering Department
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Los Angeles, CA 90024

Abstract- A full-wave spectral-domain analysis is applicd
to the characterization of multi-port microstrip discontinu-
itics. This approach employs the moment methed to find
the currents in the microstrip circuits and subsequently, the
scattering parameters of the junctions. In this approach,
all the physical cffects are considered, including radiation
and surface waves. The numerical results for a tee and a
cross junction are presented and agree well with the quasi-
static values at low frequencies, The S parameters of a
tee junction are further compared against the measured re-
sults with excellent agreement. The utilization of a shaped
T-junction as a broad-band equal-power divider is also dis-
cussed.

1. Introduction:

The full-wave analysis which deals with microstrip
discontinuitics in an open geometry has been applied to a
variety of problems. This approach based on the moment
method solution of an.cxact integeal cquation involves the
computation of a continuous plane wave spectrum such that
the effects of radiation, surface waves and the higher-order
modes ave included. This full-wave analysis lias been ap-
plied to wicrostrip open-ends and gaps (1-3), steps {4), and
hends [5-7).

From the review of the past work, one finds the full
wave analysis up Lo now is limited to two-port structures,
In this paper, a full-wave analysis up to four ports is pre-
sented, The spectral domain dyadic Green's functions are
adopted in electric-field integral equations (EFIE) to han-
dle double-layer substrate problems. Both longitudinal and
transverse current components on the microstrip are taken
into account and are the solution of the method of mo-
ments. In Section 11, the method of moments formulation
of the EFIE is briefly outlined. Mode expansion utilizing
the combination of semi-infinite line modes on transmis-
sion lines and piccewise sinusoidal basis functions on the
vicinity of the discontinuily are also discussed, In Section
HI, numerical results of the scattering parameters of var-
jous microstrip discontinuities such as basic tee and cross
junctions as well as a shaped T-junction are discussed and

compared with available measurements and quasi-static re-
sults.

IL Analysis:

Microstrip discontinuities can be looked upon, from
a circuit point of view, as N transmission lines (N ports)
jointed in a common region. The modeling involves finding
the current distribution not only in the junction region but
also in the N semi-infinite microstrip transmission lines.
The approach to solve the problem is based on the moment
method solution of the exact integral equations.

A genceric four-port microstrip discontinuity is pre-
sented in Fig. 1. Four semi-infinite microstrip transmission
lines which extend to & oo in x or y direction are jointed
in & common block (dash line box in Fig. 1). The widths
of these four transmission lines are not necessary the same.
The planar configuration of the microstrip discontinuity in-
side the common block is a state of the art to design the
desired performance of this junction in a specified frequency
range.

For microstrip junction problems, the concept of a
module can be used. A module encloses the region at or
near the junction where higher order modes are generated.
Tlie region otherwise consists of purcly uniform transmis-
sion lines. The currents inside the module are expanded
in terms of piecewise sinusoidal basis functions, while the
currents outside the module are uniform transmission line
currents (semi-infinite mode SIM).

LLAX
BOACOMIIR Y
RAWCTON
Moo i
e veeov——
L L] Uy
oY%

Fig. 1 A generic structure of a four port microstrip discontinnity

{This research was supported by U.S. Army Research Grant DAAL 03-86-K-0090




If a local coordinate system is used at cach line and
the excitation is in the nf® port, then away from the junc-
tions, the current in the n® port, with longitudinal com-
ponent otiented in r direction, is

JZ',, = (C—J(,.ﬂmr,. _ rn eJ(nﬂn:u) fn(yn)v (l)

while the current in the p** port in z direction, with p # n,
is
G -
JIr = --C—"[‘, e~ 1T f (). 2)
n

In addition. the current in the ¢** port in y direction is
JT = _-f:!r, e g (z,). 3)
n

(x is a sign index function of &* port.

k=1 -1 14 line extends to —oo in z or y dircction
(4)

where k could be p, ¢ or n. fi and i are the pre-calculated
current transverse dependence and the propagation con-
stant on the & microstrip transmission line, respectively.
It is noted that, in terms of scattering parameters, I'y is Sip.
This aspect describes a unique feature of the approach.

. { +1 5 k* linc extends to 400 in z or y direction

The basis function of the module is chosen as a
piccewise sinusoidal (PWS) function in the longitudinal di-
rection (the direction of current flow) and a pulse function
in the transverse direction. Mathematically, the current
inside the module can be expressed as

¥

Jroddle = 15" Iy (r)h"(J)] B+ Z IR z)g (J)] 75
n=l mx]

The closed form of the Fourier transform of the basis func-

tion can be found.

A nearly Galerkin method is applied to transform
the integral cquations into a matrix equation. luside the
module. the testing functions are in the same form as the
current basis functions, The testing function for the semi-
infinite line, which is chosen as a piccewise sinusoidal func-
tion in direction of current flow and with the same trans-
verse dependence as the transmission line current, is ap-
plied adjacent to the module. Finally, the matrix equation
is in the form of

(2350 1zl (2] (28] ] gy [ 191
(Zn) (20 (2] (28] || (1) [vax|
) (oo (] [ ) )
(25 ) [ [ ) | 1 L)

(6)

Each element in the submatrices of [Z] and [V,,] is the re-
action between the basis function and the testing function
and is in the form of a double integration in a spectral
domain. The superscripts in [Z] indicate the orientations
of the corresponding testing and basis functions; and the
subscripts represent their locations. For instance,

20 = o[ [ Cualn bR X )Yk
{7)

is the reaction between the basis function I? (current in
the x direction), with the testing function I™ (current in
ihe y direction). [V},] is in the same mathematical form as
[Z} except that the basis function is the semi-infinite mode
of the incident wave.

IIL. Results and Discussions:

In this research, several microstrip discontinuities
are analyzed by the method described above. The data
generated by TOUCHSTONE version 1.7 , which are es.
sentially quasi-static results, are also presented for com-
parison.

| !
PORTOl  w W PORT®2
! !
—| N |-
POKT 03
(a). a basic T-junction
PORT a4

o
e

PORT #I w w PORT 02

—t W o

PORT #)
(b). a right angle cross junction

(d). the substrate structure

Fig. 2 Layout of a variety of junctions




A basic T-junction with three identical semi-infinite
transmission lines is shown Fig. 2(a). The numerical results
shown in Fig. 3 and 4 are-converged within 0.2dB in mag:
nitude and 2.5° in-phase. The results of the magnitude of
the scattering cocflicients are compared against with mea-
surements {8] and the quasi-static values (TOUCIHISTONE
data), and-are shown in Fig. 3. It is seen that the present
full-wave results are in excellent agreement with the mea-
sured data. but.agree well only in the low frequency range
with the TOUGHSTONE results. In the high frequency
region, the unequal power transmitted on $21 and $31 ob-
served in both theory and measurement is more significant
than what TOUCHSTONE predicts. It is noted that the
TOUCHSTONE results are from a quasi-static analysis,
which are not as accurate at high frequencies. The full-
wave results and the TOUCHSTONE results for the phase
of §33 arc also compared and are shown in Fig. 4. Good
agreement is found below 10 GHz, but more than 45° dis-
crepauncy is found at 24 GHz in this particular case.

®
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Fig.3 Magmtude of § parameters of a basic T-junction
(o®99 . Aw2smul, wudml)
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Fig. 4 Phane of $33 of a basic T-junction
(w99 . Am2Snul, w=24mil)

-1 1hue method
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< §2.

Magnuude (dB)
a

had T T T

» 1
Frequency (GHz)

Fig. 5 Magnitude of § parameters of a right
angle crossing junction
(=102, A =25 mil, w=24mi
Note that in TOUCHSTOME |S111 w [S21] % 15913

A symmetrical cross junction is shown in Fig. 2(b),
where two identical transmission lines are crossed at a right
angle. With the same numerical convergence criteria asin a
basic T-junction, the magnitudes of scattering coefficients
are shown in Fig. 5. TOUCHSTONE predicts equal power
distribution for a cross junction in a wide frequency range;
however, the results of this study indicate there is an un-
equal power distribution for the cross junction. The phe-
nomenon of unequal power distribution is more significant
for higher frequencies. From a distributed circuit point of
view, this phenomenon is obvious since port Il and port
III are not symmetric and the current tends to go straight
through the cross junction. For a quasi-static calculation,
the cross junction is like two wires joinling together and in
terms of the lumped circuit concept, the power distributed
in each port is certainly identical.

The problem for a basic junction is that the power
transmission distributed in each port is usually restricted.
For example, in a basic T-junction, there is always more
power transmitted in port II than in port III, and the re-
flection coefficient increases as the frequency increases. In
order to make the circuit design more flexible, modified or
compensated discontinuities are usually used {9). A shaped
T-junction shown in Fig. 2(c) is an example of this mod-
ification, In the present full.-wave analysis, the advaniage
of using piecewise sinusoidal basis functions can be seen in
this particular application. By using piecewise sinusoidal
basis functions inside the module, the shape of the junc-
tion can be quite flexible in the modeling. The design of a
shaped T-junction shown in Fig. 2(c) is intended for equal-
power transmission in ports Il and 111 and small refiection
coefficient-at port Il If the difference of the transmitted
power for ports 11 and I1I is required to be less than 0.5 dB,
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Fig. 6 Magnitude of S parameters of a shaped T-junction
(=102, h =25 mil, ww24mil)

the results in Fig. 6 show that equal power transmission is
very broad band (from D.C. up to 16 GHz). In compari-
son, for a basic T-junction,-equal power transmission only
valid up to 6 Gliz. Besides, 533 of a shaped T-Junction is
usually a few dB-lower than that of a basic T-junction.

IV. Conclusion:

A {ull wave analysis of a multi-port network is car-
ried out by the moment method. It has the capability of
analyzing four-port irregular shaped junctions. The results
for a tee and a cross junctions are presented and found in
good agreement with the quasi-static results at low frequen-
cies. An example of using a shaped T-junction to improve
the performance of a basic T-junction was given. This ex-
ample also illustrated the flexibility and the CAD potential
of the full-wave analysis presented in this paper. The com-
puted results are further compared against the measured
data for a tee junction. The comparison shows exccllent
agreement,
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Abstract

A generalized method for calculating both ra-
diation and surface.wave losses is developed for mi-
crostrip discontinuities. The losses are determined
by a rigorous Poynting vector analysis where the
current distribution over the entire microstrip dis-
continuities is a result of a full-wave moment method
solution. It is found that above a certain frequency,
the surface-wave loss becomes more important than
the radiation loss. A seif-consistency check.of the re-

sults based on power conservation is also presented.
Introduction

Radiation and surface waves are unavoidable
physical effects of microstrip discontinuities associ-
ated with an open structure. In recent years, a
(ull-wave analysis that includes these physical effects
has been developed for various microstrip disconti-
nuities {1-5], Although both radiation and surface
waves are included, the analysis only provides the
total losses. Oune still can not distinguish the per-
centage of power losses due to radiation and due
to surface waves. The full-wave analysis employs
the moment method to find the currents in the i
crostrip circuits and subsequently, the circuit pa.

‘rameters of the discontinuities. From an antenna

point of view, once the currents in a conductor are
known, the time-harmonic fields can be computed.
From the theory of printed circuit antennas [6], the
radiated space waves are spherical wavesin the hemi-
sphere above the substrate; while surface waves are
cylindrical waves guided along the planar direction
of the substrate and decay exponentially toward the
free space, The power due to radiation and sur-
face waves can therefore be computed separately
through a rigorous Poynting vector analysis. In this
work, radiation and surface-wave losses for several
types of microstrip discontinuities are investigated.
These discontinuities include open-end, right-angle
bend, rectangular patch and overlay electromagnet-
ically coupled (EMC) lines.

Analysis

In the integral equation formulations, all field

components can be-expressed in terms of the dyadic

Green’s functions and the current components. There-

fore, the current distribution over an entire discon-
tinuity can be treated as a basic block 7] for this
analysis. The radiation loss can be calculated by in-
tegrating the Poynting vector over an infinite plane
(shown in Fig. 1) in the free space above the entire

microstrip circuits, The expression is written as

Prum 3R [[(Ex 01°)-ds (m

i This research was supported under U.S, Army Renurcln' Office Grant DAAL 03-86-k-0090




Fig. 1. Integration plane for calculating radiation loss.

p/

microstrip
discontinuity

\‘____,/

Fig. 2. Integration cylinder for calculating surface-wuve luss,

Frequem tonal Reflected | Teanvuned | Radistwn | Surfae wavel
Wiln Power Power I'awer [PTSY Lany
2 1.0l 0134 0822 0022 0.023
2 0997 .153 0. 787 0.027 (L030
22 1.001 0172 1,785 0.033 0.G41
3 1L.O0S 0.193 nn9 0.0)9 0.054
p2] 1.007 0.208 0.678 0.048 0.073

Table 1. Power conservation check for nght-angle bend discontinunty.
( Parameters are the same as those in Fig. 4. )

Surface waves can be obtained from the residues
of the Fourier integrals in the spectral domain ap-
proach. With the characteristics that surface waves
propagate along the surface, the surface-wave loss
can be found by integrating the Poynting vector over
a cylinder (shown in Fig. 2) of large radius p. The

expression of the surface-wave power is

a0 2-1
P [ 7 SRUBres x I1,) - ppdédz  (2)
Numerical Results and Discussions

Due to power conservation, the summation
of each power should be equivalent to the incident
power. An example of this check is shown in Table L.
The incident power is normalized to 1. Due to power
conservation, total power which is the summation
of reflected, transmitted, radiated and surface-wave
power should be equal to 1. The resuit in Table I
shows excellent agreement.

Figs. $-3 show the percentage of radiation
loss, surface-wave loss, and total power loss as a
function of frequency for open-end, right-angle bend,
and overlay electromagnetically coupled lines respec-
tively. It is seen that the losses due to both radia-
tion and surface waves increase with frequency. At
low-fraquencies, the losses are mainly due to radi-
ation. When the frequency increases, surface-wave
loss increases faster than the radiation loss. Above
a certain frequency, the surface-wave loss is more
significant than the radiation loss. Fig, 8 shows the
power distributions of a rectangular patch antenna,
It can be seen that the maximum radiation efficiency
is about 65% in a very narrow band around 7.2GHz
with about 10% surface wave loss and 25% return

Conclusions




12+
h
10
U
-~ 3
& Total loss e
2 Radiagonloss  ........ A
a 6,'1 Surface wave loss /,
-~ ’
@ /
« /’
3 e
4 ,/'...
S
2
O‘F.— = T - T T T T T
10 12 14 16 18 20 22 24
f(GHz)

Fig. 3. Power losses versus frequency for open-end discontinuity,
(e, = 10.2, w = 24mil, h = 25Smil )

12
ﬂ h
o- V4
%110

— 8-
® Total loss er—
A
g Radiationfoss  ..... . ,/
o 61 Surfcewaveloss o oo oo /I
-~ ‘
4 K .
3 / R

41 /.

’ .
/.
47
o
2] yod
o’
Lol
7. ;:;.’ -
0 = :l_ — T T T T T
10 12 14 16 18 20 22 p.)
f(GHz)

Fig. 4. Power losses versus t.equency tor fight-angle bend discontnuiry,
( c' = 10.2, w = 24mil, h = 25mi| )

12
ovi
It
10 € &\\\\\\\\\\\\\\\\\\Y&;&\Q h2
& /774 hi
—~ 8-
® Total loss —
e Radistionloss  ........ A
& 6] Ssufacewaveloss — _ o -~ I’
a
3

Fig. 5. Power losses versus frequency for overiay EMC lines.
( €m=22, £, =102, hl = 25mil, h2 = 25mil,

wi= 42mil* w2=76mil . ovi = 83mil )

.
.
.

6.0 ' 6.5 7?0 7.5 8.0 1S
f(GHz)

Fig.-G. Power distributions versus frequency for a
rectangular patch autenna. (¢ _=2,33, wi=
Somil, h=62mil. w2=500mil, 1=500umil)




A generalized method to distiriguish power

losses due to radiation and surface wave:is presented.

This method should aid in CAD for minimizing power

losses launched into radiated space waves and sur-
face waves from arbitrary microstrip discontinuities
and maximizing the radiation efficiency for arbitrary
patch antennas. Power loss mechanism in other
‘types of microstrip discontinuities, such as.gap, step
and stubline will be easily implemented in this anal-

ysis.
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This thesis is mainly composed of two parts. The first part is to deter-
mine the frequency-dependent chara.cteristié of microstrip lines in a three layer
shielded structure. Numerical results given in this part include the propagation
constant, characteristic impedance and transverse dependence of longitudinal and
transverse currents of both microstrip single and coupled lines for a variety of di-
electric configurations. The second part is to analyze the behavior of several
types of microstrip line-to-line transitions. The methodology employs a mo-
ment method procedure where the combination of subdomain expansion modes
and entire domain microstrip modes is used. The transitions studied include
edge-coupled lines, overlay-coupled lines and coupled-to-single lines. A power
conservation check based on a rigorous Poynting vector analysis is also used to

determine the accuracy of the numerical convergence.




Chapter 1

Introduction

Shielded microstrips are commonly encountered in microwave and mil-
limeter integrated circuits. The advantages include relatively low losses and
fairly high Q-factor as compared with open microstrips[l]. Many applications
such as high directivity directional couplers and broadband filters have been re-
alized in shielded structures{2][3]. In antenna applications, shielded microstrips
can provide nice features when used to feed a linear array of slots in the outer
conductor wall[4]. For sufficiently low frequencies, the quasi-static theory can
be employed to characterize shielded microstrip lines and their discontinuities
reasonably well[5]-[8]. However, as the frequency increases, the deviation from
quasi-static behavior becomes significant and a more rigorous full-wave analysis

is necessary.

To calculate accurately the dispersion characteristics of shielded microstrip
lines, the spectral-domain analysis proposed by Itoh and Mittra[9] is numerically
simpler and more efficient than the conventional space-domain techniques. This
method allows one to convert convolutions into algebraic equations in the Green's
function formulation; thus avoiding the necessity of the evaluation of complicated
integrals. Since the strip-width and strip-offset are comparable to the waveguide
dimensions, the transverse current component should not be neglected and a
complete dyadic Green’s function is required. After deriving the spectral-domain
Green’s function for a three layer shielded structure, boundary conditions on the
strips are employed to obtain integral equations. As a result, the propagation

constant and current distributions on the strips can be determined by the method




of moments. An impedance definition using power and total currents are chosen
to describe the exchange of power with TEM lines [10]. Once the current dis-
tributions on the strips are found, the six field components can be obtained and
the characteristic impedance can be calculated through performing the surface
intégral of the Poynting vector in the propagating direction.

Based on the analysis described in Chapter II, the gomputer program
developed for calculating the dispersion characteristics of shielded microstrip lines
can offer the capacity to analyze the shielded microstrip single and coupled lines
with arbitrary strip-width and strip-offset, while only limited results in some

special cases were reported by a few authors [12]-[15].

Several types of shielded microstrip line-to-line transitions are also studied
in this thesis as the important building blocks for high frequency inter-connects.
Applications in mm-wave integrated circuits include high-pass filter, multiplex-
ers and directional couplers. Losch [17] has designed a broadband highpass filter
in realization of an overlay-coupled line transition based on a quasi-static for-
mulation. A more rigorous full-wave analysis for coupled line filters associated
with the open structure has been discussed by Katehi [18] for an edge-coupled
transition and by Yang and Alexopoulos [20] for an overlay-coupled transition.
In [20] a spectral-domain approach by expanding the current in the coupled line
section with a combination of entire domain and subdomain modes is used. This
mode expansion mechanism seems to be the most efficient and fruitful by far. For
the advantage of preventing unnecessary interaction and radiation loss, a waveg-
uide housing is sometimes more practical to the real circuit design. In Chapter
I11, a full-wave moment method is used to characterize shielded line-to-line tran-

sitions. The transitions including edge-coupled lines, overlay-coupled lines and

et



coupled-to-single lines are investigated.

For shielded microstrip transitions, the incident power should be equal to
the summation of reflected power, transmitted power and some losses coupled
to the higher order modes and the multi-layered waveguide modes. With proper
waveguide dimensions, the losses coupled to the higher order modes and the
multi-layered waveguide modes can be removed. Therefore, a power conservation
among the incident, reflected and transmitted powers can be checked to determine
the numerical accuracy. In Chapter III, the scattering coefficients are obtained
through the method of moments. However, due to the different characteristic
impedance between the feedline and the parasitic coupled line, these coefficients
can’t contain the information of power conservation. With the characteristic
impedance obtained through the Poynting vector analysis described in Chapter
I1, the reflected power associated with the feedline and the transmitted power
associated with the parasitic coupled line can be normalized fespectively by the
product of the characteristic impedance and the square of the absolute value of

scattering coefficient for each line.

The results of power distributions and scattering coefficients of line-to-line

transitions can identify the properties and applications of each transition.




Chapter II

The Dispersion Characteristics of Three Layer

Shielded Microstrip Lines

2.1 Green’s Function for Three Layer Shielded Microstrips

In this section, the dyadic Green’s function for an electric Hertzian dipole
embedded in a three layer shielded structure is derived in a spectral domain.
The geometry shown in Fig. 2.1 contains three different dielectric layers with
permittivity €, €2, €3, and thickness hy, hy, k3 respectively. The permeability in
each region is assumed y,, the free space permeability. The total thickness is b
and the distance between two sidewalls is a. The dipole, oriented in the planar(x

or z) direction, is located either at y = h, or at y = h; + h,.
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Fig. 2.1 An electric Hertzian dipole in a three layer shielded structure.
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Instead of deriving the fields directly, the Green’s function is more easily

obtained from a Hertz potential I which satisfies the differential equations
Vzﬁ(;) + k?ﬁ(.') =0, (2.1)

where subscript : identifies different dielectric layers, i = 1,2,3. The boundary
conditions at each interface for a dipole oriented in the z direction and located

’
atz=z,,y=hy,2=0 are

at y = h; + hy,
k23, = k21,,, (2.2)
. ans; . anzg -
]w€3—a-?'/— - ]w€2—ay— = 0, (23)
6311;” = egH;y, (2.4)
antzw - aH;v = an2z - ans:’ (2'5)
oy oy 0z 0z
and at y = h,,
k3, = k{1, (2.6)
o Ads o anl, [
L ey —— = =8(z — ,)6(2), 2.7
Jwe =5 = = jwe (z — ,)6(2) (2.7)
€2n;v = elﬂfv, (2.8)
a3, N oI, _ om,, Bﬂg,. (2.9)
Cy Oy 0z 0z
When the dipole is oriented in x direction, the boundary conditions are
aty = hl + h?y
k3a, = k310, (2.10)
B 8“33 R anzg
=z _ —_—= 2.11
jwes— = = jwea 5 0, (2.11)
&ll3, = 6ll3, (2.12)
o3, 3 oI, _ oll,, Ol (2.13)

dy dy 9z 0z




and at y = h,,

k3, = k¥4, (2.14)
. anz,,- . anlz - ’
"“’W — jwey el §(z — z,)6(2), (2.15)
an:y = 6111':”, (2.16)

om, oM, oM, Ol
dy oy Oz oz’
where IT; = ;& + Iy + I3, Iy = IIZ, + 173, and & is équal to wy/&g,.

(2.17)

By matching the boundary conditions that the tangential electric fields
are zero at ¢ = 0,2 = a,y = 0 and y = b, the two-dimensional Fourier transform

of the Hertz potential in each region can be defined as,

in region 3,

(2, y, z)-— Z / A, sinh g3(b — y) sin a,ze™7P*dB, (2.18)

N|=00

Mae(z, y, 2) -2—- 2 / A, sinhgs(b - y) cos a,ze=7#*dg, (2.19)

NW==00

I03,(z, ¥, 2) =—- : / Al - cosh g3(b ~ y) sin a,ze ™7 dg, (2.20)

H3,(z,y,z)—2—-— z / A, cosh g3(b — y) sin a,ze~77d, (2.21)

N\ =00
in region 2,

Moz, 9,2) = E / (B, sinh g3y + C, cosh g3y) sin apze™7*d, (2.22)

N\ =00

Mae(z,y,2) = o— / (Bg sinh g3y + Cy cosh g3) cos anze ~ifsdg  (2.23)

2 ﬂ. -“

21r¢

LG (z,9,5) = o— E / (B sinh gay + C,, cosh guy) sin anze~##dB, (2.24)

2 a,‘,_“

G(z,4,3) = :E E / (B., sinh gy + C, cosh gay) sin apze=#7*dp, (2.25)




and in region 1,

n=-=00

(z,y,2) = 2 o z / D_sinh q,y cos a,ze7P*d,

n=-00

I3 (2,9, 2) =§— E / D, cosh gy sin a,ze~9P%dg,

n==00

n--oo

are listed in Appendix A.

tential through

68 (ag: + 8;1:, ),
88(8;[., + ag!;,, + 8H.,)’
38 (8;1...- + 8;:, 8“.:),
Hy = Jwe‘(an" in—‘),
81'1., o,

9z Oz

Ew = kznw + =

E, = k', +

Eu = kznu +

Hw - Jw‘t(

and
811. on;,

Hiy = JWa( =

o0 .
M. (z,y,2) = 27- E D, sinh g,y sin anze~7P*dg,

I, (z,9,2) = Sra 2 / D, cosh g,y sin anze~77dp,

where ¢; = (/a2 + 82 — k? and a,, = 2%, The coefficients A, A,B.,B.,.-
are.determined by substituting Egs. [2.18]-[2.29] into Egs. [2.2]-[2.17]. The results

(2.26)

(2.27)

(2.28)

(2.29)

!
o’Dz

The lateral electromagnetic fields in region i are related to the Hertz po-

(2.30)
(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

| Taking the two-dimensional Fourier transform of the electric field compo-

nents in Eqs. [2.30])-[2.32], the spectral-domain dyadic Green’s function at each




interface is then obtained as follows

~ ~ ’ ~ N '
Eyz(y = h1) = Gh1z¢ €08 qZ €08 Ty + Ghizz COS @nZ sin oy, (2.36)

~ ~ . . U ~ . !
Ey(y = k) = Giyzzsin apzsinanz, + Gy o sin @,z cosanz,, (2.37)

- - ' ~ . '
El,(y =h; + hz) = Gg],u- COS QT COS (X Ty + G21:z cos anT SIn an T, (238)

E'lz(y =h +hy) = Ga1zs5in @,z sin a,‘z; + Gyy12.sin apz cos a,.:c’l. (2.39)

For a dipole oriented in the planar direction and located at z = z;,y =
hy + hy and z = 0, the expressions for the dyadic Green'’s function are the same

except replacing €;, by, z; by €3, ks, 3, respectively. The expressions are

Eq2(y = hy) = Ghazz o8 anz cos anz; + Gig.s cOS @pz sin a,,a:;, (2.40)
E’g,(y =h)= Gi2: 5in @z sin a,‘z; 4 G1a:z8in anz cosanzy, (2.41)
Ezz(y = hy + h3) = Gagoq CO8 aaZ cOS a,,a:', 4 Gages €08 a2 Sin ap s, (2.42)
Eau(y = by + hg) = Gaays 8in @z 8in a2y + G2 $in 0T cOs anzy.  (2.43)

In Eqs. [2.36]-[2.43] the functions Ej; are defined as

Ei(z,y=y;,2)= 1 f /°° Eo(Qny By z,z')e-f"('--.')d,s (2.44)

2xa i J-oo

and the spectral-domain Green's functions é,-,-,;,,;, can be found in Appendix B,
2.2 Integral Equations for Calculating Propagation Constants

By superposition, the total electric fields due to the currents on the mi-

crostrips are

B(z,y,2) = / / z;(z, y,2,2,2) J(z,2)ds'dz, (2.45)




where the spatial domain dyadic Green’s function is equivalent to

== . 1 & josp sinanz | [sinanz’ ) ..
Gele:p,2i2/2)=5— 1 J wG(amﬂ,y)( )( )e #E=2dp. (2.46)

!
€08 a,T/ \cos a2z

The spectral-domain dyadic Green's functions Z: at each interface are expressed
in Appendix B. For microstrip lines located at y = h; and h; + h;, the currents
on strips are traveling along the z-axis with propagation constants 3, and can be
written as

Ji(z, ¥, 2) = (Jusl@)E + Jues()2)e™3%* (2.47)
and

(&Y, 7) = (Jule)3 + Jausl)2)e 7, (2.48)
respectively. With the boundary conditions that tangential electric fields are zero

on the strips, the integral equations can be obtained by substituting Eqs. [2.47],
[2.48] into Eqs. [2.45],[2.46). For each (z,z) on the microstrips, these integral

equations are

Ev(z,y = hy,2) ‘ i [ Jiu(z') sinanz'dz’ .
Ey(z,y=hy,2) = _l_e-jp,, f: E(Ofmﬂ,, z) fJu,(z’) coea..z'dz'
Ejs(z,y = hy + Ry, 2) a nm=co [ Jas(z') sinapz'dr
| Exo(2,y = by + by, 2) | [ Jae(2) cosanz'ds’ |
(0]
0
=| [, (2.49)
0
3 0 -




where

Gr12:8IN 0T Ghyapsinan,z  Guopsina,z  Gpopesina,z

G112: COS QLT G11:: €8T Ghgr; O80T  Ghgpy COS 0nT

2
!

(2.50)

G212:8INQpZ  G21428I0AnT  GogppSinanz  Gagprsina,z

G212:€080nT G217: €08 AnT Goz2:COS AR Garz COS ApZ

The method of moments can be used here to solve the integral equations
accurately for propagation constants 8, and simultaneously obtain a good ap-
proximation of the actual current distributions. A proper choice[16] of expansion

functions to satisfy the asymptotic requirement of the current distribution near

the edge is

Jis(z) = f: ApJ(z) m=1,2,-.,N, (2.51)
Jie(z) = 3> Budl(e}) m=1,2,--,N., (2.52)
where "~ ,
Ta(e) = "‘“(u) (259
w1 - (B
e = ),_.,: it a (2.54)

3
and z; = 2’ - §;. & and w; are strip-offset and strip-width, respectively, associated

with microstrip i. The functions T,, and U,, are Chebyshev polynomials of the
first and second kinds, respectively. These expansion functions (2.53],[2.54] are
shown in Fig. 2.2. Following the Galerkin procedure applied in the spectral do-
main, electric fields in Eq. [2.49) are tested with the expansion functions JIe/%*

and Je#%*, This results in a set of linear equations. These linear equations, when

10
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expressed in matrix form, are

2(8) [ Am ] =0,

m

where X )
[lezz] [lezz] [Zl2xz] [Zuz:]

[leu] [lea:::] [Zlhz] [ler::]
[Zﬂzz] [Z2lz:] [Z22zz] [Z223z]

| [ZZI:::] [Z21.rz] [Z22:z] [Z22zz] i
The matrix elements in each submatrix are in the general form of

Z(8) =

00
k ~ Tk
Zx?ul U2 ) = Z Giju‘; u‘z(am IB)J::l JJ":’

n==00

where J is defined as

2=, T Jn(e) sinan(z) + 6:)dz)

/ ) cos an(; + 6;)dz;.
With the Bessel function identities
" e/**T,(z)
Ju(2)j"r = / = ds

and
"+zl(z)(n +1)*r = / Un(z)V1 - 22e/*dz,

Eqs. [2.58],(2.59] can be further expressed in closed forms, which are

J* = cosand; In ["‘“J,,._ ﬁ"2—1')'-)]

+ sinané; R, [j'"'lJm-l(anw‘ )]

and
im mei anW; ._2_
J7 = cosané; R.[J mIp(—— )a,.w.
mel a,.w. 2
— sinanb; In [_) mIm(— )_a,‘w.

12

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.63)




In solving Eq. [2.55] to obtain the coefficients A,, and By, the determinant
should be set to zero for non-trivial solutions. Therefore, the matrix elements
[2.57] can be evaluated numerically for any ( and the values which force the
determinant of Z to zero are the propagation constants. In other words, the

propagation constant , must satisfy the characteristic equation

det 2(8,) = 0. (2.64)

2.3 Spectral Domain Calculation of Characteristic Inpedance

Once the current distributions are obtained, the characteristic impedance
of three layer shielded microstrip lines can be calculated using the ratio of average
power to half of the square of the total longitudinal current[10]. The formula of

the characteristic impedance, for a single line, is

2P,
Z. = —I:zl’ (2.65)
while for symmetric coupled lines, is
n 2P B'I P av (2.66)

I sl + I; 12 -I-?T
The average power is the surface integral of the z component of the Poynting

vector

Pu = -Re / / x [*) . sdydsz. (2.67)
It is noted that the axial currents of asymmetric coupled lines I, and I.; are not
the same, Therefore, in order that the definition of characteristic impedance be
useful, the formula described in [11] can be used:

2Pr _ Refy BBy x A7) - idydz.

Z' 13 12

(2.68)

13




where PFi and I,,; are respectively the average partial power and axial current

associated with the microstrip 7 for the mode p. In the above, E,,, is the total elec-

tric field and ﬁ,.- is the magnetic field generated by the current on the microstrip

i. With similar approach in deriving Eq. [2.49], the transverse components of

electromagnetic fields in region ¢ can be expressed as

1
Ei(z,y,2) = "e =il Z E:(am ,Bm y) cos a,z

nm =00

Ey(z,y,2) = le"'ﬁ "Z E y(Cn, By y) sinanz

Hiz(zs y,z)

and

)
w(z)ys- = —C—Jp"z

where

n=—-00

1 =

.

1 o o = .
= 23" H (0tny Ppy y) Sinatpz

nw-~00

am ﬂm y) cos anZ

14

J Jm(z') sina,z dz’

[ Jate(z') sin o, z'dz’

[Eﬂn Eil:s Eﬂz: Eﬂzz ] *

[Eﬂyl Eilys Ei?y: Ei?y:]’

J Jm(a:') sina,z dz’
S Jm(z') cos anz dz’

[ Jaus(2') sinapz'dz’

I [ Jaez(z") cos anz dz’ ]
[ [ Jis(z') sinapz'dz’ .

[ Jie=(z) cos anz dz’

| J Jae(z') cos anz'dz’ ]
[ [ Niu(2') sin apz'dz’ .
J Ju,(z') cosa,z dz’

J Jg,,(z') sina,z dz’

i J Jgg,(z')cos anz dz’ ]

[ I Ju,(z')sina,.z'dm'

[ Jus(z') cos anz'dz’

¥ Jae(z') cos anz'dz’ ]

b

)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)




s r . . . 1

Hz = Hilz: Hilzz Hi?:u Hizzz ] L] (2'75)
and

" r . . . . -

Hll = | Ha'lyz Hily: Ht'zyz HiZyz ] . (2'76)

Substituting Eqs. [2.69]-[2.72] into Eq. [2.67], one can proceed the integration
with respect to x to yield

( [ 1) Jm(z') sina,z dz’ \
-

;. v E, [ Jiee(2') cos anz'dz’
i= 4— : / - dy . o
e ‘1 E, J Jaus(z ) sinagz dz

\ | Jaee(z') cos apz'dz’ |)

( [ [ J1es(2') sin apz'da’ N
? fJ ( ') 'd '
nZ dz

X / o |y 1t z, cos :c' g -

‘| H y [ Jats(2) sinapz dz

\ i [ Jase(z') cos anz'dz’ |)

where P; is the average power in region i. The integration over y can be also

solved in closed form and the results are shown in Appendix C.

The average partial power PP can be calculated in a similar way by con-

sidering only Jii. and J, in Eqs. [2.71],[2.72].
2.4 Numerical Results and Discussions

The shielded microstrip lines considered in this analysis are shown in
Figs. 2.3(a)-(d) where infinitesimally thin strips and the ground plane are as-
sumed to be perfect conductors. It is also assumed that the substrate material is

lossless. The propagation constant associated with these structures can be deter-
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mined by solving Eq. [2.64] and the approximated current distributions can be
obtained simultaneously. The longitudinal current distribution is normalized such
that it’s integration over the entire strip-width is equal to unity. The transverse
current distribution is also nor;naﬁzed in relative magnitude compared to the
longitudinal current distribution. Once both current distributions are known, one
can solve the six field components, and therefore the characteristic impedance can
be computed through a power-current definition. The dispersion characteristics
for both single and coupled lines are evaluated numerically and their dependence

on dielectric constant, strip-width, strip-offset and frequency will be discussed in

this section.

Dispersion characteristics for the single-line configuration are shown in
Figs. 2.4-2.7. In Fig. 2.4, the dispersion characteristics are computed for various
dielectric constants. It is seen that the increase in permittivity increases the prop-
agation constant and decreases the characteristic impedance, regardless of which
layer the strip is located. Fig. 2.5 shows the variation of dispersion characteris-
tics with the strip-width. As the width increases, the transverse current density
also increases and the longitudinal current distribution becomes more oscilla-
tory. Both propagation constant and characteristic impedance drop significantly
as the width is close to the distance between two sidewalls. Fig. 2.6 shows the
dispersion characteristics as a function of the strip-offset. The transverse current
distribution increases asymmetrically with the increase of strip-offset §. Both
propagation constant and characteristic impedance decrease with the increase of
strip-offset 6. Fig. 2.7 shows the frequency behavior of a single line. The be-
havior of the current distributions is similar to the dependence on strip-width
because the strip-width becomes electrically wider as the frequency increases.

Both propagation constant and characteristic impedance increase with frequency

17
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Fig. 2.4 Characteristics of a single line for the configuration of Fig. 2.3(b).
(a) Normalized propagation constant versus permittivity e.
(b) Characteristic impedance versus permittivity e.
Casel: =22, =c3=¢, Case2: ¢ =102,¢ = €3 =,
Cased: e =€3=22,6=¢, Cased: g =€3=102,62=¢,
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Fig. 2.5 Characteristics of a single line for the configuration of Fig. 2.3(a).
(a) Normalized propagation constant and characteristic impedance versus
strip-width. (b) Normalized longitudinal current density versus strip posi-
tion. (c) Relative transverse current density versus strip position.
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Fig. 2.6 Characteristics of a single line for the configuration of Fig. 2.3(a).
(a) Normalized propagation constant and characteristic impedance versus
strip-offset. (b) Normalized longitudinal current density versus strip posi-
tion. (c) Relative transverse current density versus strip position.
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Fig. 2.7 Characteristics of a single line for the configuration of Fig. 2.3(a).
(a) Normalized propagation constant versus normalized frequency.
(b) Characteristic impedance versus normalized frequency.
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in this case. The number of expansion functions used to calculate propagation
constant is much less sensitive than that used to calculate the characteristic

impedance.

Figs. 2.8-2.12 show the dispersion characteristics for coupled lines. In
Fig. 2.8, two-dominant modes, even-mode and odd-mode of symmetric coupled
lines are shown as a function of the strip-offset 6§ and are compared with the results
of a single line in some special cases. The even-mode for § = 0 corresponds to
the dominant mode of a single line with the strip-width twice wide, while the
odd-mode corresponds to the dominant mode of a single line with an electric wall
at z = §. The comparison shows good agreement. Fig. 2.9 shows the dispersion
characteristics of asymmetric coupled lines for two independent modes. Mode
1, which is similar to the odd mode of the symmetric coupled lines, has slower
phase velocity than mode 2 and it's effective dielectric constant is close to 2.2.
This indicates that the fields are confined in the middle layer. On the other hand,
mode 2, similar to the even-mode of symmetric coupled lines, has larger phase
velocity. This implies the fields around lines are less confined. Both modes are
not strongly dispersive. Fig. 2.10 shows the current distributions on each strip

for both modes.

The spectral-domain analysis provides unique features in calculating the
dispersion characteristics of shielded microstrip lines. However, care must be
taken on the choice of the basis functions for numerical convergence and efficiency.
The actual unknown current distributions can be approximated reasonably well
if a proper choice of expansion functions is made. Fig. 2.11 shows the comparison
with the theoretical results published by Krage and Haddad [13] for the symme-

tric coupled lines. Good agreement is found if the same number of the expansion
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Fig. 2.8 Characteristics of symmetric coupled lines. (Fig. 2.3(c))
(a) Normalized propagation constant versus strip-offset.
(b) Characteristic impedance versus strip-offset.
(c) Even-mode longitudinal current density versus strip position.
(d) Even-mode transverse current density versus strip position.
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Fig. 2.9 Characteristics of asymmetric coupled lines. (Fig. 2.3(d))
(s) Normalized propagation constant versus normalized frequency.
(b) Modal impedance versus normalized frequency.
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Fig. 2.10 Current distributions of asymmetric coupled lines. (Fig. 2.3(d))
(a) Normalized longitudinal current density versus strip position. (mode 2)
(b) Relative transverse current density versus strip position. (mode 2)
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(d) Relative transverse current density versus strip position. (mode 1)
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Fig. 2.11 Characteristics of symmetric coupled lines. (Fig. 2.3(c))
(a) Effective dielectric constant versus normalized frequency.
(b) Characteristic impedance versus normalized frequency.
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functions ( first four Legendre polynomials for expanding the longitudinal cur-
rent density and one sinusoidal function for expanding the transverse current
density) is used. By increasing the number to 8 for the longitudinal current
density and to 2 for the transv;erse current density, the curves are much close to
those using the expansion functions in Egs. [2.53],(2.54] with only three expansion
functions for the longitudinal current density and two for the transverse current
density. The comparison between this analysis and the quasi-static results[12]
at low frequencies are shown in Table 2.1 for symmetric coupled lines with dif-
ferent strip-offsets. The comparison shows good agreement. Fig. 2.12 shows the
comparison for asymmetric coupled lines with the results published recently by
Carin and Webb[15]. The dyadic Green’s function used in [15] doesn’t consider
the fact that the tangential electric field on both sidewalls is zero and is treated
as a good approximation only when the distance between the two sidewalls is

large compared to the strip-width.
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Geometrical parameters: ¢, = 9.5, h = 0.004\,,h, = gh,w=h,§ =0

5/h Vph vph Ref [12) Ze Zc Ref [12)
0.05 0.431 0.43;1 19.09 23.50
0.25 0.427 0.429 31.37 32.50
1.00 0.419 0.419 41.68 42.00
2.00 0.411 0.412 45.80 46.00
§/h Uph Uph Ref [12] Zc Zc Ref[12)
0.05 0.383 0.384 65.64 65.60
0.25 0.381 0.383 61.89 62.00
1.00 0.380 0.382 54.67 55.00
2.00 0.384 0.386 50.99 51.00

Table. 2.1 Characteristics of two layer symmetric coupled lines in
comparison with the quasi-static results Ref {12].
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Chapter III
Full Wave Analysis of Shielded Microstrip

Line-To-Line Transitions

3.1 Green’s Function Formulation and the Method of Moments

Several types of shielded line-to-line transitions as shown in Figs. 3.1-3.3
are investigated. The methodology applied here is in analogy to that reported
in {19],[20] by expanding the currents in the coupled line section with a com-
bination of entire domain and subdomain modes, however, the spectral-domain
Green'’s function and the numerical procedure are very much different. Since
the strip-offset and strip-width are comparable to the waveguide dimensions, the
transverse current component should not be neglected and a complete dyadic
Green’s function for an enclosed multi-layer structure is required in the integral
equation formulation. The derivation of integral equations for overlay-coupled

lines is similar to that of Eq. [2.49] except the currents on strips should be

Ji@,4,2) = (@) () + ()2

+ D2 )5l + Je(2)2 (3.1)
and
R\ D) = D@ () + ()2
+ aa(?)(Jl2) + T2, (3:2)
where
Jf, = (€9 — Demifn)U (=), (3.3)
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Fig. 3.1 Edge coupled line-to-line transition
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N
l.lz = Z:l I;.zflnz(z')v (3.4)

lclc = Jlelu (3-5)
M ’
I, = 2. I fia(2), (3.6)
e, = (Tem#n¥\U(2 + ovl), 3.7)
N
2‘lx = ZtI;':f;z(z )’ (3'8)
e = Jain (3.9)
M . [
2.13 = El;f,fz";,(z )1 (3-10)
m=]
and
1 ;ifz>0
U(z) = ne (3.11)
0 ; otherwise.

ovl is the overlap of the two microstrip lines. Superscripts e and s represent
the entire domain modes and the subdomain modes respectively. The transverse
dependence Ji; and propagation constants 8, are parameters with respect to
the entire domain modes of the microstrip i and can be obtained through the
analysis in Chapter II. The combination of a piecewise-sinusoidal(P\VS) function
and a pulse function is used as subdomain mode and is defined from the end of
each line(shown in Fig. 3.4). These modes are

oink,ﬁd-'t-::" . -
f.-’:‘(=)={0 “ jfor |+ = zn| < d (3.12)

; otherwise

sfor |z~ zm| < 8
fa2(z)= ‘ | <3 (3.13)
0 ; otherwise )

where d is the half-length of the PWS function and also the width of pulse func-

tion. z,, is the center associated with each expansion function. The parameter

kei can be chosen quite flexibly within 0 to 55. A nice feature of the combination
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of subdomain and entire domain modes is that when the method of moments

is applied, the quantities of interest, I' and T, are directly obtained by matrix

inversion. Besides, the dimension of the impedance matrix is relatively small,

typically < 40. The integral equation using the above currents can be expressed

as

E\(z,y = hy,2)

Eyo(z,y = by, 2) E / 'Jﬁ'Gn(dmﬂ z)
Eh(z) y=hy+hy,z) 2’mn=-oo

_Eu(zvy = hl + h2a z)_

g ]
(—] 0O o
Py 3

where

Jia = /o ’ J.-.,(a:')sina,.:c'dz',
Jiz = /o : Jis(z') cos ana'dz’,
[ e ds,
B = [ Ja()e®ds,

—
[ )
I

and a is expressed in Eq. (2.50].

) o
hea(J8, + J3,)

‘iut(jl.lx + jl‘lz)
jzil(jglz + j;lz)

_jzft(jzelz + j;lz)_

dg

(3.14)

(3.15)
(3.16)
(3.17)
(3.18)

Using a Galerkin’s procedure in the method of moments, the testing func-

tions chosen as J;iu(z)f%(z) are applied to the integral equations 3.14. The

x-directed currents of entire domain modes are neglected in comparison with the

z-directed currents of entire domain modes. This results in 2M+2N+2 linear
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equations with 2M+2N+2 unknowns. These linear equations, when expressed in

matrix form, are

| .
(2] 1Z35L] (Zrau] [Z.‘;:.]J T | [[z;";:.
[Zﬂu] [er:.IJ [Zzz..] [Z;;:c] [1201 [Zi'l‘fc]

T

] ) (3.19)

o
where each submatrix [ Z;;,, ], due to the presence of both x and z directed

currents, contains 4 submatrices as

(3.20)

[ Z‘ijca] = [ [Zn'juzz] [Zijnz:] ]

[Zijuu] [Zt'ju:cz]
and submatrix | I;, ] and [ Z7,, | (superscript p identifies the entire domain modes

ref, tra, and inc), contain two submatrices as

L] = [ s ] (3.21)
[I.it]

and

[25..] = [ ] |, (3.22)

28]

Each element in these submatrices represents the reaction of different basis func-
tions. For instance, the elements of [Z,,,,:,] are the reaction between x-directed
currents of subdomain mode associated with microstrip 1 and z-directed currents
of subdomain mode associated with microstrip 2. The elements of [Z{{L are
the reaction between x-directed currents of subdomain modes associated with
microstrip 1 and z-directed currents of reflected propagating mode. These sub-
domain modes are either PWS functions or pulse functions. The entire domain
modes are composed of the reflected mode, transmitted mode, and incident mode

which are distinguished by the abbreviation ref, tra, and inc, respectively. The
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computation of each element requires both infinite summation and integration in

the spectral domain and their expressions are in the general forms of

Zt';‘umuz— Z / Guunuz(amﬁ)Jtlun(au)JJtuz(an) m;(ﬂ) Juz(ﬂ)dﬁ (3.23)

ns—oo

and

uﬁe = 2 / Guuz(amﬂ) “u(an)JJtt(an) u(ﬂ) jlz (ﬂ)dﬂ1 (3'24)

n==—00
where f% and J .}, i1z are Fourier transform of the longitudinal dependence of the kth
subdomaon mode and entire domain mode p respectively. The spectral-domain
expressions of longitudinal dependence for both subdomain and entire domain

modes can be found in Appendix D.

The analysis for other line-to-line transitions are similar to that for overlay
coupled lines. For edge-coupled lines the y dependence of currents associated with
the parasitic coupled line should be the same as that associated with the feedline.
For coupled-to-single lines the entire domain modes in the feedlines should be

discussed separately due to the existence of two different modes(even-mode and
odd-mode).

3.2 Numerical Results and Discussions

Numerical results for line-to-line transitions including reflection and trans-
mission coefficients as a function of the overlap and line-offset are shown in
Figs. 3.5-3.12. It is found that the bandwidth, defined as the frequency range be-
tween two cut-off frequencies, is approximately 5-;'- and the maximum coupling oc-
curs around ov] = ("—1)-'\3 with a wide frequency-insensitive range. This implies
that the transitions are broad-band and are very useful in many MMIC applica-
tions. These phenomena can be explained emperically by a quasi-static analysis

of symmetric coupled lines. For two coupled lines, the impedance matrix[21] is
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Fig. 3.7 |T'| versus overlap for the configuration of Fig. 3.2

Fig. 3.8 |T'| versus overlap for the configuration of Fig. 3.2
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Fig. 3.9 |T| versus overlap for even-mode excitation.
(configuration Fig. 3.3)

Fig. 3.10 |T| versus overlap for even-mode excitation.
(configuration Fig. 3.3)
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Fig. 3.11 |T| versus cverlap for odd-mode excitation.
(configuration Fig. 3.3)

Fig. 3.12 |T| versus overlap for odd-mode excitation.
(configuration Fig. 3.3)
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Zy=2p= —j-;—(Zce cotd, + Z, cotd,) (3.25)

and
2y =2y = —j%(Zc, cscl, — Z.,csch,), (3.26)
where
8, = 25 ol (3.27)
Age
and
2=
b, = x—ovl. (3.28)

go
Z., and Z,, represent respectively even-mode and odd-mode characteristic imped-

ance associated with the coupled line section. The scattering matrix can be
found from the impedance matrix. As a result the reflection and transmission
coefficients are obtained:
-T2
(Zn+2.p -2

T= 22y,
(2u+ 2.2 -2}’

where Z, is the characteristic impedance of feedine and the parasitic coupled line.

(3.29)

(3.30)

From Eq. [3.30), the cut-off condition occurs at Z,; = 0. That is

Z. sind,
== = 3.31
Z., sinb, (3:31)
For the general case Z.. >> Z,,, the solution is approximated to
ovl > g n=0123..- . (3.32)

2
Since the ficlds of the odd-mode associated with the coupled line section in an
overlay configuration are mostly confined in the middle layer, the effective diclec-
tric constant of the odd-mode is approximately equal to the diclectric constant

of the middle layer. Therefore, the overlap for cut-off is about:

ovl = (3.33)

1
e
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For edge coupled lines, the fields associated with odd-mode are spread in the two
dielectric layers. Therefore, the relative guided wavelength is approximately equal
to the mean value of the guided wavelength with respect to each dielectric layer.
Assuming these two dielectric layers with permittivity ¢,, and €4 respectively, the

overlap for transmission cut-off is about:

1
ovl = 3.34
T @31

Figs. 3.5-3.8 show that the coupling efficiency is better in overlay line-
to-line transition than in edge coupled line-to-line transition. This indicates the
former constitutes a promising element in realization of millimeter wave high-pass
filter. Figs. 3.9-3.12 show the results for the case of an overlay coupled-to-single
microstrip transition. It is seen that the even-mode coupling depends less on the
strip-offset of parasitic coupled line, as compared with single-line coupling. It is
also noted that the even-mode of coupled lines can couple energy to a centered
parasitic microstrip line while the odd-mode can not. This may find applications

in a phase detector.

The frequency response of an overlay coupled microstrip transition is
shown in Figs. 3.13-3.14. The geometrical parameters are specially designed
in the coupled line section where the line-width is much larger than the spac-
ing between two lines. It is seen that, in a wide frequency range, the coupling
coefficients are almost independent of frequency. In addition, it is possible to
couple more than 95% of the total power through the discontinuity. This geom-
etry(so called suspended stripline) may be very useful due to these two excellent

characteristics.
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Fig. 3.13 Magnitude of I' and T versus frequency.

Fig. 3.14 Phase of I and T versus frequency.

&g =e3=1,¢3 =102, A = hy = T0mil, h; = 10mil, w; = w3 = 50mil,

6, = 63 = 0,0vl = 185mil, a = 500mil, (configuration Fig. 3.2)
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In the present computations of the above transition problems, entire do-
main mode s of 3 guided wavelengths long and 9-18 subdomain modes for both
pulse and piecewise sinusodial functions are used in each microstrip line. The
numerical results obtained are within 1% convergence accuracy. The power con-

servation is also checked in each case and will be discussed in next section.

3.3 Power Conservation Check

For shielded microstrip transitions, the convergence of the moment method
solutions is very sensitive to the type and number of expansion function chosen.
Power conservation provides a nice way of checking the accuracy of the solutions.
According to the configurations in Figs. 3.1-3.3, the incident power should be
equal to the summation of reflected power, transmitted power and some losses
coupled to the higher order modes and the multi-layered waveguide modes. These
higher order modes and multi-layered waveguide modes correspond respectively
to the zeros and poles of the characteristic equation 2.64[22]. Moreover, all of the
higher order modes and multi-layer waveguide modes have cut-off frequency while
the dominant mode is zero cut-off(23]. That is to say, by choosing the relatively
smaller waveguide dimensions or lower frequencies, one <an allow only dominant
mode propagating in the shielded structure, In this analysis to characterize the
shielded line-to-line transitions, the waveguide dimensions are restricted to allow
only dominant mode for each line. Therefore, the relation of power conservation

for line-to-line transitions can be simply written as
Pinc = Prel + Pmn (3-35)

where Pinc, Prey and P, represent incident, reflected and transmitted power,
respectively. With the reflection and transmission coefficients obtained by the

method of moments in Sec. 3.1 and the characteristic impedance obtained by the
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Poynting vector analysis in Sec. 2.3. The reflected power associated with the
feedline and transmitted power associated with the parasitic coupled line can be
normalized respectively by the product of the characteristic impedance and the
square of the absolute value of the scattering coefficient for each line. Thus, the
relation of power conservation can be expressed in terms of scattering coefficients

and characteristic impedance as follows:
2 Zeaypi2
IT|* 4+ =—=|T*=1, (3.36)
ch

where Z,, and Z, are the characteristic impedance of the feedline and the para-
sitic coupled line, respectively. For coupled-to-single configuration, the relation is
slightly different due to different definition of characteristic impedance for sym-

metric coupled lines. The relation is

Z.
IT)? + 37 2T =1, (3.37)

where Z. and Z,, are characteristic impedance of even-mode and odd-mode,

respectively.

The conservation check for Figs. 3.5-3.12 are shown in Table 3.1~3.4 re-
spectively. It is seen that the error in each case is within 1%. This confirms
the excellent accuracy of the numerical results of both the frequency-dependent

characteristic impedance and the moment method solutions.
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Microstrip 1

61 = 0.075a

Pp1 = 2.634

Zy = 45.90

Microstrip 2

69 = 0.075a

B2 = 2.634

Ze» = 45.90

ol | ITF+ZATE | ol | TR+ FRTP

-0.05 1.000 0.13 1,000
-0.03 1.000 0.15 1.000
-0.01 1.000 0.17 1.000
0.01 000 0.19 1.000
- 003 1.000 0.21 1.000
0.05 ' 1.000 0.23 1.000
0.07 1.000 0.2 1.000
0.09 1.000 0.27 1.000
0.11 1.000 0.29 1.000

Table. 3.1 Power conservation check for the configuration of
Fig. 3.1. Both |['| and |T| are the same as those in Fig. 3.5
and Fig. 3.6.
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_Microstrip 1

6, =0.000

Bp1 = 1.946

Ze = 55.90

Microstrip 2

6, = 0.000

Bp2 = 1.907

Zy = 59.00
ovl IC)?+£ITP | ovl IT|? + 2|7
-0.05 1.000 0.3 0.997
-0.03 1.000 0.15 0.999
-0.01 1.001 0.17 1.004
0.01 1,003 0.19 1.003
0.03 1.004 0.21 1,002
0.0 1.003 1023 1.001
0.07 1.001 0.25 1,000
0.09 1.001 0.27 1.000
0.1 0.999 0.29 0.999

Table. 3.2 Power conservation check for the configurati on of
Fig. 3.2. Both |T'| and |T'| are the same as thos e in Fig. 3.7
and Fig. 3.8.
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Microstrip la and 1b

6 = 0.100a

Bp1 = 1.950

Z, = 63.80

Microstrip 2

8, =0.000

Bp2 = 2.072

Ze = 53.60

ovl TP+ Z(TF | ovl IT? + Z|TP?

-0.08 1.000 0.13 1,001
-0.03 1.000 0.15 1.002
-0.01 l.@ 0.17 1.002
0.01 1.000 0.19 1,001
0.03 1.000 021 1.002
0.08 1.002 023 1.005
0.07 - 1,003 025 1.002
0.09 1.002 0.27 1.000
0.11 1001 0.29 1.003

Table. 3.3 Power conservation check for the configuration of
Fig. 3.3. Both |I'| and |T| are the same as those in Fig. 3.9
and Fig. 3.10.




Microstrip la and 1b

6, = 0.100a
Bp1 = 2.291
Zy = 45.30
Microstrip 2
62 = 0.100a
Bp2 = 2.075
Ze = 53.60
ol | [TP+&ITE| oul | D+ ZRITP
-0.05 1.000 0.13 1.005
-0.03 1.000 0.1 1,008 f
-0.01 1.000 0.17 1.003
0.01 1.000 0.19 1.001
0.03 1,000 0.21 1,000
0.05 1.000 0.23 1.000
0.07 1.000 0.25 1.002
0.09 1.001 0.27 1.008
0.1 1.003 0.29 1.007

Table. 3.4 Power conservation check for the configuration of
Fig. 3.3. Both |T'| and |T'| are the same as those in Fig. 3.11
and Fig. 3.12.
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Chapter IV

Conclusions

An efficient method has been presented in Chapter II for obtaining the
dispersion properties of three layer shielded microstrip lines. This method, which
is based on a hybrid mode analysis followed by the method of moments has
a number of unique features. Numerical results given include the propagation
constant, characteristic impedance, transverse dependence of longitudinal and-
transverse current distributions for both single and coupled microstrip lines with
arbitrary strip-width and strip-offset. The dispersion characteristics and their
dependence on various geometrical parameters have also been presented. This
method is general and can be easily extended to the multiconductor case. The
choice of expansion functions is carefully made for improving numerical efficiency.

Good agreement is shown in comparison with other available data.

In Chapter III, a full-wave analysis is proposed to develop a generalized
dynamic model for several types of shielded microstrip line-to-line transitions.
The results obtained from the method of moments are checked by power conser-
vation with error within 1%. The results presented also show excellent properties
in some transitions and may find promising applications in MMIC coupler and

filter designs.
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Appendix A

The pertinent coefficients in Egs. [2.18)~[2.29] are expressed as

—jwhosina,z, (€ .
A= G Tt (Z:,'smh q‘h‘) (A1)
o
—jBLe(2 — 1)sinh g hy sinh g2h; fi
A = —JjWh, Sinapz,

* k2 Denl Den2 | 7 Ber(2 — 1) cosh g hy coshgzhy f (A2)
+iBe(2 - 1) coshqiby fiy

Bz Jwit, sin azy -1 sinh g by cosh ga(hy + h2) cosh gahs (A3)
ki Denl \ _ginhgyh, sinhgy(hy + hg)sinh gshs
C.<= Jwpo sin anzy [ & sinhgihy sinhga(hy + h3) cosh gshs (Ad)
k3 Denl + sinh gy & cosh g3(hy + h3) sinh g3k
(~i8%(e2 - €3) fr )
-sinh qy &, cosh g;h, cosh q3h3
—JB(42 - o) fu
B = Ziwe sinanz, | -coshgih sinhqzhy coshgahs (AS)

*~ k3 Denl Den2 ~jB(es - 48) fiy

- cosh ¢, sinh g3(Ry + A3) cosh gahs
-iB(ea — &1) fu

\* cosh g1 b, cosh ga(h; + h3)sinh gshs




(iB%(es — €) fu )
- sinh g1k sinh g2, cosh g3h3
+iB(48 - &) fu

—jwp, sina,z, | -coshqihy coshgshy coshgshs

z 2 : 3
k3 Denl Den2 +iB(es - -51) fu

(A.6)

«cosh Q1 cosh qg(hl + hq) cosh Q3h3

+iBL(e — &1) fu
\* cosh ¢, h, sinh g3(hy + k) sinh g3k, )

S
T

(A7)

—jwp, sinanz; [ 2% cosh gshs sinh gzhy
k3  Denl

+2 sinh g3k cosh gzh9

. . Jﬁ%ég(% - 1) sinhq;;hasinh qzhz fn
DI — —pro slna“zx N
*= =8 Denl Den2 +jBes(2 - 1) cosh gshgcosh gah; f1y (A.8)
—jBes(2 — 1) cosh gshs fn

- —jwp, CO8 a,.z; Q.
A; B Denl \e; sinh qlhl) (A9)

. , [ —anBe(2 - 1)sinh gihy sinhgsh f3y
' =jWho, €O8QRT,

A= ¥ Denl Den? -%ﬁ(f}l- 1) cosh gy hy cosh gahy fa (A.10)
+aner (2 — 1) coshqi by f1y
—jwpo c08 apzy [ =% sinh g1k cosh gs(hs + hs) cosh gsha
B, = Dol (A.11)
° €nl \ -sinh g h; sinhga(h; + hy)sinh gshs

C.== JWh, CO8 ApZy (%sinhq;hx sinh ga(hy + h3) cosh gshs

= (A.12)
k3 Denl +sinh g, Ay cosh g;(Ay -+ h) sinh gshs )
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{-an%(fz - 63) fa
-sinh g1 by cosh g3k cosh g3h;
—an (92 — &) fir

B == jwp, cosanz; | -coshqihysinhgzhy coshgshs
z = 2
k¥ Denl Den2 —an(es — g;?_) fur

-cosh ¢ sinh g3(h; + h3) coshgshs

-Gng‘}(ﬁz - 51) Jfu

\ cosh g1 by cosh g3(ky + h;) sinh gzhs ),

(Oln%(ez - 63) fa \
-sinh ¢y &, sinh g3k, cosh g3h3
+a,.(5§1 - Cl) f?l

O < ZIwh _co8 a2, | ‘coshqihy coshgahy coshgshs
z k3 Denl Den2 +an(ey - B8) fiy

- cosh g cosh g3(hy + h;) cosh g3hs
+an%(‘2 - ‘l) fll

\* cosh g, , sinh g3(hy + h3) sinh g3k, )

D. = —Jwht, COS AT, ( 2.4 cosh gaha sinh gzhy )

£ k3 Denl +%& sinh g3h; cosh g3k,

: ,  [anSe(2 — 1)sinhgshssinhgzh; fiy
! —JWi, COSa,T
b, = k3 Denl Dcln2 +anes(2 — 1) cosh g3hy cosh gzh7 f1y

—0”63(3' - 1) cosh q;;ha fn

(A1)

(A.14)

(A.15)

(A.16)




Denl = ¢

Den2 =

Ju = sinh gk, coshgahzsinh gzhs + %:3 sinh g1k, sinh g3h; cosh g3h3
3

faa= Z—:cosh q1hy sinh g3k, sinh g3h3 + sinh gy b, cosh g3k, sinh ¢33

(ql cosh q; by cosh g3k, sinh g3h3 )
+’:?- cosh ¢, k, sinh g2k cosh g3k

+q3sinh ¢, hy cosh gzh; cosh gahs

\ +92 sinh g1 ky sinh g2h3 + sinh g3hs )

(63q1 sinh ¢, k; cosh g3k cosh g3h3 )
+¢ 1},-3’3- sinh ¢; k, sinh g3k sinh g3h3

+452¢, cosh ) A, sinh g;h; cosh g3hs

\+qq3 cosh gy & cosh g2, sinh ¢g3h3 }

f12 = sinh q b, sinh g3k,

Ja1 = sinh g, &, sinh g3As
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Appendix B

The spectral-domain-dyadic Green’s function in Egs. [2.36]~[2.43] is

—jwu, [k2 - B2 2
G = JI;” [ Ben? fu+ DenlﬁDen2(fu 'f5+f21’f6)} (B.1)
—jwp, [k2 —a? 2
Gz = J,::# [ e fu+ Den;x Den2‘fu fs+ fa- fs)] (B.2)
Who anf anf
Gusz = k?, [Denl fu+ m(fu fs+ fa- fo)] (B.3)
Gllzz = "Gllxz (B.4)
—jwp, 2 2
Gi2:x = Jkgll [ Den'? fz + Denlﬂ DenZ\fu fs+ fa: fs)] (B.5)
—jwp, [k —a? 2
Gues = sz” [Dcnl f“+Denf Denz‘f“'f’””'f“)] (B4)
_ Wi [—anf anf
Giaz = i3 [Denlf‘2+Den1 Den2‘f“ s+ fa2 fs)] (B.7)
Gl?u = -Gm: (B's)

3

sy [ = B
o = o2 [Dml fa+ gt ot fa-f)|  (B9)

e = e (i, ok
G = “;:;0 [B:;ffn + Dcnollnger&
Gner = =Gpaue
Ganis = Guu
Gaiz = Giaae
Gnzr = Ghaee
Gz = Ghras

(fra: fs+ fr2- f4)]

Dol %Y Denl b Dergfn fat f‘)] (B.10)

(B.11)
(B.12)
(B.13)
(B.14)
(B.15)
(B.16)

where Denl, Den2, f13, fiz, fa1, fa2 are listed in Appendix A, the functions fs, f¢, fs,




and fg are expressed as follows:

f = —eaql(-ez- — 1) sinh g1 b, cosh g3h; cosh g3hs

- 23 ( —=-1) COSh q1hy sinh gyh; cosh g3k,

fs = —*51¢13(€—2 — 1) cosh gy by cosh gk, sinh g3hy

- ﬂqg(— ~ 1) cosh gy k, sinh g2k, cosh g3h3

¢ )
fa= -6193(5 — 1) cosh gy by sinh g3h3

€ )
fo= —fsql(é — 1)sinh gy, cosh g3h;
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(B.18)

(B.19)

(B.20)




(EHSFI;w - EZv-ﬁz.za)f 2es
Kt Ez,ﬁ‘c—'é I?..IC 3¢
P = % E + vz vﬁy 2ys v2 )f2 (C2)
== +(E23°H2‘yn - EzvcH;u)f?ct
+(E'23'6f[;yc - Ezwﬁ;zc)fkc
Y (Bl fon — B I
Py= v Z azH3y fase — E3y 3zf3cc] (C.3)
@ p=coo
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Appendix C
The average power in each region is expressed as

=2 2 (Bl fu— Bl (C)

Eio = (K} - o2)D: + awqs(D,, + D) - janD, (C.4)

Eyy = (K} + ¢)(D, + D) - aaqsD; — ja18D; (C.5)

H,. = jwegy D, - we (D, + D) (C.6)

fvll,, = we D, - jweanD, (C.7)

Eyy = (k3 ~ a2)B; + aags(C, + C.) ~ jBanp; (C.8)

Esee = (K2 - &3)C. + angs(B., + B.) — jBa,C, (C.9)

Evye = (8 + 63)(B, + B,) — an0aC: — jquC: (C.10)

Ezye = (K} + ¢2)(C, + C) - antsB. - ja:1 8B, (C.11)

H3.y = jwesqsC, — wea8(B, + BL) (C.12)

H.. = jwesqa B, — weaB(C, + CL) (C.13)

M3y = weaaBB, — jweran B, (C.14) |
o1 .




]v{g,,c = wexBC, — jweranC, (C.15)

Ess = (K — o}) As — anga(4, + A7) = jPanA, (C.16)
Bay = (K + )AL + AL) + anges + jgoPA, (C.17)
Hy, = —jwesgs A, — wesf(A, + A,) (C.18)
Ha, = wesfA; — jwesanA, (C.19)
and
fus = Sgni|~+hy + ——sinh2g.h C.20
e = Sgni|=ghi+ 7=sinh 20,y (C.20)
1 1 .
fiee = [5 + Esmh 2q1h1] (C.21)
1 | R .
frs = Sgn; [—'2'h2 + E;(smh 2g2(hy + hy) — sinh 2‘12’!1)] (C.22)
1
fg.c = [Z;l;(cosh 2q3(h1 + hz) - cosh 2(]3’!1)] (0.23)
f2ca = Sgn.- [4—;:(00811 2q:(h1 + ’13) -~ cosh 2QQh1)] (0.24)
fre = [%h, + z%(sinh 2¢3(hy + h3) — sinh 2qgh;)] (C.25)
fas = Sgn; [—%ha + %;sinh 2qahs] (C.26)
1 |
face = [5’!3 + Z&;Slnh 2q3h3] (C.27)

Sgn; is equal to 1 as ¢; is real and cqual to -1 as ¢; is imaginary. The functions
Ay~ D; and A; ~ Dj, can be found in Appendix A.
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Appendix D

The Fourier transform of longitudinal dependence of both subdomain

modes and entire domain modes are as follows:

fm - 2’3,.'(008 ke,'d - cosﬂd)

oiBm

sinke;d(82 - k%)

-~

2
~ - Q .
Tl (8) = (e i +7) / sin Bp12¢7*dz
- : 0 .
e (8) = (31’5"_’ + 7) /_ - sin ﬂ,gzc""”dz
J5d(8) = (e-j ”n - j) /o sin B, z¢77*dz

where

[ sinBpizeivrds = ﬂ-,ﬁ%,- + 7 [6(8 £ By) = 6(8 F By
o0 = Pyi

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)
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